Fiber reinforced polymer composites are two component material systems in which fibers are embedded in a polymer matrix. Such a system inherently has an interface where the two components meet. Adjacent to the interface extending beyond the fiber surface is the “interphase region.” Properties within the interphase vary due to variations in the chemistry. The study of mechanical property variations with changing chemistry will help in better understanding and tailoring of the composite properties. The present work concentrates on the investigation of nanomechanical properties within the interphase of a glass fiber embedded in polyester matrix system. The glass fibers were coated with two types of silanes to produce a strong and a weak bond at the fiber-matrix interface. Nanoindentation techniques coupled with atomic force microscopy imaging capabilities have been used for this investigation. Two different tips were employed for indenting, one being a Berkovich diamond tip supplied by Hysitron, Inc., Minneapolis, MN and another being a parabolic tungsten tip, which was made in the laboratory. Indentations were performed within the interphase region, also in the bulk matrix, and on the glass fiber. The variation in mechanical properties such as modulus, stiffness, hardness, and penetration depth were obtained within the interphase by indenting at the fiber surface outward. Variations of the elastic modulus in the interphase region and its relation to the chemistry are presented. The results obtained using two different tip shapes have been compared. Phase imaging was performed using tapping mode atomic force microscopy to qualitatively identify the presence of an interphase near the glass fiber-polyester interface. These experiments show that when no coupling agent is used the interphase thickness is less than 0.1μm, and its exact determination is limited by the spatial resolution of the tips employed and the process of indentation. Phase imaging results with composite samples made of coated glass fibers corroborate the results obtained from nanoindentation experiments.

1.
Matthews
,
F. L.
, and
Rawlings
,
R. D.
, 1999,
Composite Materials: Engineering and Science
,
CRC Press LLC
,
Boca Raton, FL
, pp.
3
50
and
168
180
.
2.
Williams
,
J. G.
,
Donnellan
,
M. E.
,
James
,
M. R.
, and
Morris
,
W. L.
, 1990, “
Properties of the Interphase in Organic Matrix Composites
,”
Mater. Sci. Eng., A
,
126
, pp.
305
312
. 0025-5416
3.
Thomason
,
J. L.
, 1995, “
The Interphase Region in Glass Fiber Reinforced Epoxy Resin Composites: 3. Characterization of Fiber Surface Coatings and the Interphase
,”
Composites
0010-4361,
26
, pp.
487
498
.
4.
Winter
,
R. M.
, and
Houston
,
J. E.
, 1998, “
Interphase Mechanical Properties in an Epoxy-Glass Fiber Composite as Measured by Interfacial Force Microscopy
,”
Proceedings of the Society of Experimental Mechanics
, June 1–3, pp.
355
358
.
5.
Chawla
,
K. K.
, 1998,
Composite Materials: Science and Engineering
,
2nd ed.
,
Springer-Verlag
,
New York
, pp.
6
15
and
145
150
,
6.
Chua
,
P. S.
, and
Piggott
,
M. R.
, 1985, “
The Glass Fibre-Polymer Interface:I. Theoretical Considerations for Single Fiber Pull-Out Test
,”
Compos. Sci. Technol.
0266-3538,
22
, pp.
33
42
.
7.
Chua
,
P. S.
, and
Piggott
,
M. R.
, 1985, “
The Glass Fibre-Polymer Interface: II. Work of Fracture and Shear Stresses
,”
Compos. Sci. Technol.
,
22
, pp.
107
119
. 0266-3538
8.
Chua
,
P. S.
, and
Piggott
,
M. R.
, 1985, “
The Glass Fibre-Polymer Interface: III. Pressure and Coefficient of Friction
,”
Compos. Sci. Technol.
0266-3538,
22
, pp.
185
196
.
9.
Chua
,
P. S.
, and
Piggott
,
M. R.
, 1985, “
The Glass Fibre-Polymer Interface: IV. Controlling Shrinkage of Polymers
,”
Compos. Sci. Technol.
0266-3538,
22
, pp.
245
258
.
10.
Mandell
,
J. F.
,
Chen
,
J.-H.
, and
McGarry
,
F. J.
, 1980 “
A Microbonding Test for In-situ Fiber-Matrix Bond and Moisture Effects
,”
Department of Material Science and Engineering, MIT
, Report No. R80-1.
11.
Herrera-Franco
,
P. J.
, and
Drzal
,
L. T.
, 1992, “
Comparison of Methods for the Measurement of Fiber/Matrix Adhesion in Composites
,”
Composites
0010-4361,
23
, pp.
2
25
.
12.
Kelly
,
A.
, and
Tyson
,
W. R. J.
, 1965, “
Tensile Properties of Fiber-Reinforced Metals: Copper/Tungsten and Copper/Molybdenum
,”
J. Mech. Phys. Solids
0022-5096,
13
, pp.
329
44
.
13.
Wadsworth
,
N. J.
, and
Spilling
,
I.
, 1968, “
Load Transfer from Broken Fibers in Composite Materials
,”
Br. J. Appl. Phys., J. Phys. D
,
1
, pp.
1049
1058
. 0022-3727
14.
Drzal
,
L. T.
,
Rich
,
M. J.
, and
Lloyd
,
P. F.
, 1983, “
Adhesion of Graphite Fibers to Epoxy Matrices: I. The Role of Fiber Surface Treatment
,”
J. Adhes.
,
16
, pp.
1
30
. 0021-8464
15.
Broutman
,
L. J.
, 1969, “
Measurement of the Fiber-Polymer Matrix Interfacial Strength: Interfaces in Composites
,”
ASTM Spec. Tech. Publ.
0066-0558,
452
, pp.
27
41
.
16.
Wu
,
H. F.
, and
Claypool
,
C. M.
, 1991, “
An Analytical Approach of the Microbond Test Method Used in Characterizing the Fiber-Matrix Interface
,”
J. Mater. Sci. Lett.
,
10
, pp.
260
262
. 0261-8028
17.
Gaur
,
U.
, and
Miller
,
B.
, 1989, “
Microbond Method for Determination of Shear Strength of a Fiber/Resin Interface: Evaluation of Experimental Parameters
,”
Compos. Sci. Technol.
0266-3538,
34
, pp.
35
51
.
18.
Qian
,
L. L.
,
Bruce
,
F. A.
,
Kellar
,
J. J.
, and
Winter
,
R. M.
, 1995, “
An Instrument for Testing Interfacial Shear Strength in Polymer Matrix Composites
,”
Meas. Sci. Technol.
,
6
, pp.
1009
1015
. 0957-0233
19.
Shih
,
C. W.
,
Yang
,
M.
, and
Li
,
J. C. M.
, 1991, “
Effect of Tip Radius on Nanoindentation
,”
J. Mater. Res.
,
6
(
12
), pp.
2623
2628
. 0884-2914
20.
VanLandingham
,
M. R.
,
McKnight
,
S. H.
,
Palmese
,
G. R.
,
Huang
,
X.
,
Bogetti
,
T. A.
,
Eduljee
,
R. J.
, and
Gillespie
,
J. W.
, Jr.
, 1997, “
Nanoscale Indentation of Polymer Systems Using the Atomic Force Microscope
,”
J. Adhes.
0021-8464,
64
, pp.
31
59
.
21.
Munz
,
M.
,
Sturm
,
H.
,
Shultz
,
E.
, and
Hiurichsen
,
G.
, 1998, “
The Scanning Force Microscope as a Tool for the Detection of Local Mechanical Properties With the Interphase of Fiber Reinforced Polymers
,”
Composites, Part A
1359-835X,
29A
, pp.
1251
1259
.
22.
Winter
,
R. M.
, and
Houston
,
J. E.
, 2000, “
Interfacial Force Microscopy: Application to Polymer Surfaces
,”
Polym. Prepr. (Am. Chem. Soc. Div. Polym. Chem.)
,
41
(
2
), pp.
1454
1455
. 0032-3934
23.
Doerner
,
M. F.
, and
Nix
,
W. D.
, 1986, “
A Method for Interpreting the Data From Depth-Sensing Indentation Instruments
,”
J. Mater. Res.
0884-2914,
1
(
4
), pp.
601
609
.
24.
Oliver
,
W. C.
, and
Pharr
,
G. M.
, 1992, “
An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments
,”
J. Mater. Res.
0884-2914,
7
(
6
), pp.
1564
1582
.
25.
Mai
,
K.
,
Mader
,
E.
, and
Muhle
,
M.
, 1998, “
Interphase Characterization in Composites With New Nondestructive Methods
,”
Composites, Part A
1359-835X,
29A
, pp.
1111
1119
.
26.
Meurs
,
P. F. M.
,
Schreurs
,
P. J. G.
,
Peijs
,
T.
, and
Meijer
,
H. E. H.
, 1996, “
Characterization of Interphase Conditions in Composite Materials
,”
Composites, Part A
1359-835X,
27
(
9
), pp.
781
786
.
27.
Munz
,
M.
,
Sturm
,
H.
,
Shultz
,
E.
, and
Hiurichsen
,
G.
, 1998, “
The Scanning Force Microscope as a Tool for the Detection of Local Mechanical Properties Within the Interphase of Fiber Reinforce Polymer
,”
Composites, Part A
1359-835X,
29A
, pp.
1251
1259
.
28.
Mai
,
K.
,
Mader
,
E.
, and
Muhle
,
M.
, 1998, “
Interphase Characterization in Composites With New Nondestructive Methods
,”
Composites, Part A
1359-835X,
29A
, pp.
1111
1119
.
29.
Thomason
,
J. L.
, 1995, “
The Interphase Region, in Glass Fiber Reinforced Epoxy Resin Composites : 3. Characterization of Fiber Surface Coatings and the Interphase
,”
Composites
0010-4361,
26
, pp.
487
498
.
30.
Downing
,
T. D.
,
Kumar
,
R.
,
Cross
,
W. M.
,
Kjerengtreon
,
L.
, and
Kellar
,
J. J.
, 2000, “
Determining the Interphase Thickness and Properties in Polymer Matrix Composites Using Phase Imaging Atomic Force Microscopy and Nanoindentation
,”
J. Adhes.
0021-8464,
14
, pp.
1801
1812
.
31.
VanLandingham
,
M. R.
, 2001 “
Nanoindentation of Polymers: An Overview
,”
Advances in Scanning Probe Microscopy of Polymers. Macromolecular Symposia Proceedings
,
V. V.
Tsukruk
and
N. D.
Spencer
, eds., Vol.
167
, pp.
15
44
.
32.
Khanna
,
S. K.
,
Winter
,
R. M.
,
Ranganathan
,
P.
,
Reddy
,
S.
,
Kalukanimuttam
,
M.
, and
Paruchuri
,
K.
, 2003, “
Sample Preparation Techniques for Nano-Mechanical Characterization of Glass Fiber Reinforced Polyester Matrix Composites
,”
Composites, Part A
1359-835X,
34
, pp.
53
65
.
33.
Liu
,
H.
, 2002, “
Investigation of Chemistry and Nano-Mechanics at the Interface of Polymer Matrix-Glass Fiber Composites Using FT-IR/EWS, AFM, and Interfacial Force Microscopy
,” Ph.D. thesis, South Dakota School of Mines and Technology, Rapid City, SD.
34.
Dhavalikar
,
R.
, 1998, “
In-Situ Kinetic Study of Epoxy-Amine Curing Reaction with Fiber Optic Fourier Transform Infrared Spectroscopy
,” MS thesis, South Dakota School of Mines and Technology, Rapid City, SD.
35.
Plueddemann
,
E. P.
, 1970, “
Silanes and Other Coupling Agents
,”
J. Adhes.
0021-8464,
2
, pp.
184
201
.
36.
Greenwood
,
J. A.
, and
Matsubara
,
K. L.
, 1984, “
A Surface Roughness Parameter in Hertz Contact
,”
Wear
0043-1648,
100
, pp.
47
57
.
37.
Triboscope: Nanomechanical Test System Setup And Operation Guide
,” Hysitron Incorporated.
38.
Hay
,
J. C.
,
Bolshakov
,
A.
, and
Pharr
,
G. M.
, 1999, “
A Critical Examination of the Fundamental Relations Used in the Analysis of Nanoindentation
,”
J. Mater. Res.
,
14
(
6
), pp.
2296
2305
. 0884-2914
39.
Sneddon
,
I. N.
, 1946, “
Boussineq’s Problem for a Flat Ended Cylinder
,”
Proc. Cambridge Philos. Soc.
0068-6735,
42
, pp.
29
39
.
40.
Sneddon
,
I. N.
, 1948, “
Boussineq’s Problem for a Rigid Cone
,”
Proc. Cambridge Philos. Soc.
0068-6735,
44
, pp.
429
507
.
41.
Sneddon
,
I. N.
, 1965, “
The Relationship Between Load and Penetration in the Axisymmetric Boussinesq Problem for a Punch of Arbitrary Profile
,”
Int. J. Eng. Sci.
0020-7225,
3
(
1
), pp.
47
57
.
42.
Useful Tips and Tricks for Testing Samples With the Triboscope
,” Literature, Hysitron Incorporated.
43.
VanLandingham
,
M. R.
,
McKnight
,
S. H.
,
Palmese
,
G. R.
,
Eduljee
,
R. F.
,
Gillespie
,
J. W.
, Jr.
, and
McCullough
,
R. L.
, 1997, “
Relating Polymer Indentation Behavior to Elastic Modulus Using Atomic Force Microscopy
,”
Mater. Res. Soc. Symp. Proc.
0272-9172,
440
, pp.
195
200
.
44.
Johnson
,
K. L.
, 1985,
Contact Mechanics
,
Cambridge University Press
,
New York
, pp.
84
104
.
45.
Tip Shape Calibration Procedure
,” Support Notes, Hysitron Incorporated, www.hysitron.comwww.hysitron.com
46.
Bolshakov
,
A.
, and
Pharr
,
G. M.
, 1998, “
Influences of Pile Up on the Measurement of Mechanical Properties by Load and Depth Sensing Indentation Techniques
,”
J. Mater. Res.
0884-2914,
13
(
4
), pp.
1049
1058
.
47.
Plueddemann
,
E. P.
, 1970, “
Silanes and Other Coupling Agents
,”
J. Adhes.
0021-8464,
2
, pp.
184
201
.
48.
Plueddemann
,
E. P.
, 1982,
Silane Coupling Agents
,
Plenum
,
New York
, p.
155
.
49.
Gao
,
S.-L.
, and
Mader
,
E.
, 2002, “
Characterization of Interphase Nanoscale Property Variations in Glass Fibre Reinforced Polypropylene and Epoxy Resin Composites
,”
Composites, Part A
1359-835X,
33
, pp.
559
576
.
50.
VanLandingham
,
M. R.
, personal communication.
51.
Ragavan
,
D.
,
Gu
,
X.
,
Nguyen
,
T.
,
VanLandingham
,
M.
, and
Karim
,
A.
, 1999, “
Mapping Polymer Heterogeneity Using Atomic Force Microscopy Phase Imaging and Nanoscale Indentation
,”
Macromolecules
0024-9297,
33
(
7
), pp.
2573
2583
.
52.
Nalwa
,
H. S.
, 2000,
Handbook of Nanostructured Materials and Nanotechnology
,
Academic
,
New York
, Vol.
5
, pp.
656
657
.
53.
Babcock
,
K. L.
, and
Prater
,
C. B.
, 2004, “
Phase Imaging: Beyond Topography
,” Application Note, AN11, Rev. A1, Veeco Instruments, Inc.
You do not currently have access to this content.