Friction-stir welding (FSW) promises joints with low porosity, fine microstructures, minimum phase transformation, and low oxidation compared with conventional welding techniques. It is capable of joining combinations of alloys not amenable to conventional welding. Certain combinations of FSW parameters were used to create FSWs of aluminum alloys 5083-H18 and 6111-T4, and the physical weld defects were measured. The mechanical behavior of FSW welds made under the most favorable choice of parameters was determined using tensile tests and hardness measurements and was correlated to the microstructures of the weld and base material. Stir zones (SZs) in the 5083 specimens were much softer than the strain-hardened base materials. SZs in the 6111 material are approximately as hard as the base material. Natural aging of 6111 FSW specimens occurred in some parts of the heat-affected zone and produced hardening for up to 12weeks after welding. Annealing of 5083 FSW specimens produced abnormal grain growth (AGG) for welds produced under certain welding conditions and in certain parts of the weld zone. AGG is more severe for low-heat conditions, i.e., higher tool travel speed but lower rotational speed. The conditions for most favorable FSW are presented, as well as the expected microstructures and mechanical properties, along with the weld conditions that promote AGG.

1.
Saunders
,
F. I.
, and
Wagoner
,
R. H.
, 1995, “
The Use of Tailor-Welded Blanks in Automotive Applications
,” in
Simulation of Materials Processing: Theory, Methods and Applications
,
S.-F.
Shen
and
P. R.
Dawson
, eds.,
Balkema
,
Rotterdam
, pp.
157
164
.
2.
Saunders
,
F. I.
, and
Wagoner
,
R. H.
, 1996, “
Forming of Tailor-Welded Blanks
,”
Metall. Mater. Trans. A
1073-5623,
27A
, pp.
2605
2615
.
3.
Stasik
,
M. C.
, and
Wagoner
,
R. H.
, 1998, “
Forming of Tailor-Welded Aluminum Blanks
,”
Int. J. Form. Processes
1292-7775,
1
(
1
), pp.
9
33
.
4.
Murr
,
L. E.
,
Liu
,
G.
, and
McClure
,
J. C.
, 1998, “
A TEM Study of Precipitation and Related Microstructures in Friction-Stir-Welded 6061 Aluminum
,”
J. Mater. Sci.
0022-2461,
33
(
5
), pp.
1243
1251
.
5.
Jata
,
K. V.
,
Sankaran
,
K. K.
, and
Ruschau
,
J. J.
, 2000, “
Friction-Stir Welding Effects on Microstructure and Fatigue of Aluminum Alloy 7050-T7451
,”
Metall. Mater. Trans. A
1073-5623,
31
(
9
), pp.
2181
2192
.
6.
Defalco
,
J.
, 2006, “
Friction Stir Welding vs. Fusion Welding
,”
Weld. J. (Miami, FL, U.S.)
0043-2296,
85
(
3
), pp.
42
44
.
7.
Sato
,
Y. S.
,
Kokawa
,
H.
,
Enomoto
,
M.
, and
Jogan
,
S.
, 1999, “
Microstructural Evolution of 6063 Aluminum During Friction-Stir Welding
,”
Metall. Mater. Trans. A
1073-5623,
30
(
9
), pp.
2429
2437
.
8.
Mishra
,
R. S.
, and
Ma
,
Z. Y.
, 2005, “
Friction Stir Welding and Processing
,”
Mater. Sci. Eng., R.
0927-796X,
50
(
1
–2), pp.
1
78
.
9.
Sato
,
Y. S.
,
Park
,
S. H. C.
, and
Kokawa
,
H.
, 2001, “
Microstructural Factors Governing Hardness in Friction-Stir Welds of Solid-Solution-Hardened Al Alloys
,”
Metall. Mater. Trans. A
1073-5623,
32
(
12
), pp.
3033
3042
.
10.
Arbegast
,
W. J.
, 2006, “
Friction Stir Welding After a Decade of Development—Its Not Just Welding Anymore
,”
Weld. J. (Miami, FL, U.S.)
0043-2296,
85
(
3
), pp.
28
35
.
11.
Su
,
J. Q.
,
Nelson
,
T. W.
, and
Sterling
,
C. J.
, 2003, “
A New Route to Bulk Nanocrystalline Materials
,”
J. Mater. Res.
0884-2914,
18
(
8
), pp.
1757
1760
.
12.
Huang
,
D.
,
Cai
,
B.
,
Adams
,
B. L.
, and
Nelson
,
T.
, 2005, “
Grain Shape of Friction Stirred Al 7075 via Microscopic Approach
,” in
Dislocations, Plasticity, Damage and Metal Forming Material Response and Multiscale Modeling
,
A.
Khan
and
A.
Khoei
, eds., pp.
391
393
.
13.
Mahoney
,
M.
,
Mishra
,
R. S.
,
Nelson
,
T.
,
Flintoff
,
J.
,
Islamgaliev
,
R.
, and
Hovansky
,
Y.
, 2001, in
Friction Stir Welding and Processing
,
K. V.
Jata
,
M. W.
Mahoney
,
R. S.
Mishra
,
S. L.
Semiatin
, and
D. P.
Filed
, eds.,
TMS
,
Warrendale, PA
, p.
183
.
14.
Heinz
,
B.
, and
Skrotzki
,
B.
, 2002, “
Characterization of a Friction-Stir-Welded Aluminum Alloy 6013
,”
Metall. Mater. Trans. B
1073-5615,
33
(
3
), pp.
489
498
.
15.
Liu
,
G.
,
Murr
,
L. E.
,
Niou
,
C. S.
,
McClure
,
J. C.
, and
Vega
,
F. R.
, 1997, “
Microstructural Aspects of the Friction-Stir Welding of 6061-T6 Aluminum
,”
Scr. Mater.
1359-6462,
37
(
3
), pp.
355
361
.
16.
Verma
,
R.
,
Friedman
,
P. A.
,
Ghosh
,
A. K.
,
Kim
,
S.
, and
Kim
,
C.
, 1996, “
Characterization of Superplastic Deformation Behavior of a Fine Grain 5083 Al Alloy Sheet
,”
Metall. Mater. Trans. A
1073-5623,
27
(
7
), pp.
1889
1898
.
17.
Hsiao
,
I. C.
, and
Huang
,
J. C.
, 2002, “
Deformation Mechanisms During Low and High Temperature Superplasticity in 5083 Al–Mg Alloy
,”
Metall. Mater. Trans. A
1073-5623,
33
(
5
), pp.
1373
1384
.
18.
The Aluminum Association
, 2001, “
Aluminum: The Corrosion Resistant Automotive Material
,” Publication AT7, p.
14
.
19.
Edwards
,
G. A.
,
Stiller
,
K.
,
Dunlop
,
G. L.
, and
Couper
,
M. J.
, 1998, “
The Precipitation Sequence of Al–Mg–Si Alloys
,”
Acta Mater.
1359-6454,
46
(
11
), pp.
3893
3904
.
20.
Charit
,
I.
, and
Mishra
,
R. S.
, 2004, “
Evaluation of Microstructure and Superplasticity in Friction Stir Processed 5083 Al Alloy
,”
J. Mater. Res.
0884-2914,
19
(
11
), pp.
3329
3342
.
21.
Davis
,
J. R.
, 1993, “
Aluminum and Aluminum Alloys
,”
ASM Specialty Handbook
,
ASM International
,
Materials Park, OH
.
22.
Schade
,
T.
, 2004, “
Matrix High-Speed Steels
,”
Metalforming
,
Precision Metalforming Association
,
Independence, OH
, pp.
48
50
.
23.
Shaw
,
M. C.
, 1966, in
Mechanical Behavior of Materials
,
F. A.
McClintock
and
A.
Argon
, eds.,
Addison-Wesley
,
Reading, MA
, pp.
443
448
.
24.
ASTM
, “
E8 Standard Test Methods of Tension Testing of Metallic Materials
,”
Annual Book of ASTM Standards, American Society for Testing and Materials
, Vol.
3.01
.
25.
Sato
,
Y. S.
,
Urata
,
M.
, and
Kokawa
,
H.
, 2002, “
Parameters Controlling Microstructure and Hardness During Friction-Stir Welding of Precipitation-Hardenable Aluminum Alloy 6063
,”
Metall. Mater. Trans. A
1073-5623,
33
(
3
), pp.
625
635
.
26.
Sato
,
Y. S.
,
Urata
,
M.
,
Kokawa
,
H.
, and
Ikeda
,
K.
, 2003, “
Hall-Petch Relationship in Friction Stir Welds of Equal Channel Angular-Pressed Aluminium Alloys
,”
Mater. Sci. Eng., A
0921-5093,
354
(
1–2
), pp.
298
305
.
27.
Sato
,
Y. S.
, and
Kokawa
,
H.
, 2003, “
Friction Stir Welding (FSW) Process
,”
Weld. Int.
0950-7116,
17
(
11
), pp.
852
855
.
28.
Kim
,
D.
,
Lee
,
W.
,
Kim
,
J.
,
Chung
,
K.-H.
,
Kim
,
C.
,
Okamoto
,
K.
,
Wagoner
,
R. H.
, and
Chung
,
K.
, 2008, “
Material Characterization of Friction Stir Welded TWB Automotive Sheets
,” unpublished.
29.
Brandes
,
E. A.
, and
Brook
,
G. B.
, 1998,
Smithells Light Metals Handbook
,
Butterworth-Heinemann
,
Oxford
, pp.
21
22
.
30.
Shigematsu
,
I.
,
Kwon
,
Y. J.
,
Suzuki
,
K.
,
Imai
,
T.
, and
Saito
,
N.
, 2003, “
Joining of 5083 and 6061 Aluminum Alloys by Friction Stir Welding
,”
J. Mater. Sci. Lett.
0261-8028,
22
, pp.
353
356
.
31.
Miles
,
M. P.
,
Decker
,
B. J.
, and
Nelson
,
T. W.
, 2004, “
Formability and Strength of Friction-Stir-Welded Aluminum Sheets
,”
Metall. Mater. Trans. A
1073-5623,
35A
(
11
), pp.
3461
3468
.
32.
Hu
,
X.
,
Wagoner
,
R. H.
, and
Daehn
,
G. S.
, 1994, “
Comparison of Explicit and Implicit Finite Element Methods in the Quasistatic Simulation of Uniaxial Tension
,”
Int. J. Math. Model.
0270-0225,
10
, pp.
993
1003
.
33.
Yao
,
Z. C.
,
Zhang
,
L.
,
Kariat
,
S.
, and
Zhou
,
Y. J.
, 2007, “
Tailor-Welded Aluminum Blanks for Liftgate Inner
,” SAE Paper No. 2007-01-0421.
34.
Metals Handbook
,
Properties and Selection: Nonferrous Alloys and Special Purpose Materials
,
10th Ed.
,
ASM International
, Vol.
2
.
35.
Krajewskim
,
P. E.
, and
Ryntz
,
E. F.
, 1999, “
Method for Improving the Hemmability of Age-Hardenable Aluminum Sheet
,” U.S. Patent No. 5,948,185.
36.
Krajewski
,
P. E.
, and
Carsley
,
J. E.
, 2003, “
Heat Treatment Effects on Bending in AA6111
,”
Proceedings of the TMS 2003 Annual Meeting: Automotive Alloys 2003
,
The Minerals, Metals, and Materials Society
,
Warrendale, PA
.
37.
Krajewski
,
P. E.
, 2006, “
The Effect of Retrogression Heat Treatments on Aluminum Flanging and Trimming
,” SAE Technical Paper No. 2006-01-0984.
38.
Horita
,
Z.
,
Fujinami
,
T.
,
Nemoto
,
M.
, and
Langdon
,
T. G.
, 2001, “
Improvement of Mechanical Properties for Al Alloys Using Equal-Channel Angular Pressing
,”
J. Mater. Process. Technol.
0924-0136,
117
(
3
), pp.
288
292
.
39.
Hassan
,
K. A. A.
,
Norman
,
A. F.
,
Price
,
D. A.
, and
Prangnell
,
P. B.
, 2003, “
Stability of Nugget Zone Grain Structures in High Strength Al-Alloy Friction Stir Welds During Solution Treatment
,”
Acta Mater.
1359-6454,
51
(
7
), pp.
1923
1936
.
40.
Humphreys
,
F. J.
, 1997, “
A Unified Theory of Recovery, Recrystallization and Grain Growth, Based on the Stability and Growth of Cellular Microstructures. 1. The Basic Model
,”
Acta Mater.
1359-6454,
45
(
10
), pp.
4231
4240
.
41.
Goloborodko
,
A.
,
Ito
,
T.
, and
Yun
,
X.
, 2004, “
Friction Stir Welding of a Commercial 7075-T6 Aluminum Alloy: Grain Refinement, Thermal Stability and Tensile Properties
,”
Mater. Trans.
1345-9678,
45
(
8
), pp.
2503
2508
.
42.
Karlsen
,
M.
,
Frigaard
,
O.
, and
Hjelen
,
J.
, 2003, “
SEM-EBSD Characterization of the Deformation Microstructure in Friction Stir Welded 2024 T351 Aluminum Alloy
,”
Mater. Sci. Forum
0255-5476,
426
(
4
), pp.
2861
2866
.
43.
Sato
,
Y. S.
,
Kokawa
,
H.
, and
Ikeda
,
K.
, 2001, “
Microtexture in the Friction-Stir Weld of an Aluminum Alloy
,”
Metall. Mater. Trans. A
1073-5623,
32
(
4
), pp.
941
948
.
44.
Andersen
,
I.
,
Grong
,
O.
, and
Ryum
,
N.
, 1995, “
Analytical Modeling of Grain Growth in Metals and Alloys in the Presence of Growing and Dissolving Precipitates. 2. Abnormal Grain Growth
,”
Acta Metall. Mater.
0956-7151,
43
(
7
), pp.
2689
2700
.
45.
Attallah
,
M. M.
, and
Salem
,
H. G.
, 2005, “
Friction Stir Welding Parameters: A Tool for Controlling Abnormal Grain Growth During Subsequent Heat Treatment
,”
Mater. Sci. Eng., A
0921-5093,
391
(
1–2
), pp.
51
59
.
46.
Turnbull
,
A.
, and
de Los Rios
,
E. R.
, 1995, “
The Effect of Grain Size on Fatigue Growth in an Aluminum Magnesium Alloy
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
18
(
11
), pp.
1355
1366
.
You do not currently have access to this content.