Nonlinear analysis of a thin circular functionally grade plate is formulated in terms of von Karman’s dynamic equations. The plate thickness is constant and temperature-dependent functionally graded material (FGM) properties vary through the thickness of the plate. Forces and moments of the plate, due to large vibration amplitudes, are developed in this paper by solving the governing equations for harmonic vibrations. Corresponding results are illustrated in the case of steady-state free vibration. The results show that the variation of volume fraction index is influential in forces, moments, and FGM properties.

1.
Praveen
,
G. N.
, and
Reddy
,
J. N.
, 1998, “
Nonlinear Transient Thermo Elastic Analysis of Functionally Graded Ceramic-Metal Plates
,”
Int. J. Solids Struct.
0020-7683,
35
, pp.
4457
4476
.
2.
Yang
,
J.
, and
Shen
,
H. S.
, 2001, “
Dynamic Response of Initially Stressed Functionally Graded Rectangular Thin Plates
,”
Compos. Struct.
0263-8223,
54
, pp.
497
508
.
3.
Reddy
,
J. N.
, and
Cheng
,
Z. Q.
, 2003, “
Frequency of Functionally Graded Plates With Three-Dimensional Asymptotic Approach
,”
J. Eng. Mech.
0733-9399,
129
, pp.
896
900
.
4.
Woo
,
J.
, and
Meguid
,
S. A.
, 2001, “
Nonlinear Analysis of Functionally Graded Plates and Shallow Shells
,”
Int. J. Solids Struct.
0020-7683,
38
, pp.
7409
7421
.
5.
Chen
,
C.-S.
, 2005, “
Nonlinear Vibration of a Shear Deformable Functionally Graded Plate
,”
Compos. Struct.
0263-8223,
68
, pp.
295
302
.
6.
Selmane
,
A.
, and
Lakis
,
A. A.
, 1999, “
Natural Frequencies of Transverse Vibrations of Non-Uniform Circular and Annular Plates
,”
J. Sound Vib.
0022-460X,
220
(
2
), pp.
225
249
.
7.
Li
,
S.-R.
, and
Zhou
,
Y.-H.
, 2001, “
Shooting Method for Non-Linear Vibration and Buckling of Heated Orthotropic Circular Plates
,”
J. Sound Vib.
0022-460X,
248
, pp.
379
386
.
8.
Haterbouch
,
M.
, and
Benamar
,
R.
, 2004, “
The Effects of Large Vibration Amplitudes on the Axisymmetric Mode Shapes and Natural Frequencies of Clamped Thin Isotropic Circular Plates. Part II: Iterative and Explicit Analytical Solution for Non-Linear Coupled Transverse and In-Plane Vibrations
,”
J. Sound Vib.
0022-460X,
277
, pp.
1
30
.
9.
Touloukian
,
Y. S.
, 1967,
Thermo Physical Properties of High Temperature Solid Materials
,
Macmillan
,
New York
, Chap. 3.
10.
Praveen
,
G. N.
, and
Reddy
,
J. N.
, 1998, “
Nonlinear Transient Thermo Elastic Analysis of Functionally Graded Ceramic-Metal Plates
,”
Int. J. Solids Struct.
0020-7683,
33
, pp.
4457
4476
.
11.
Reddy
,
J. N.
, 2000, “
Analysis of Functionally Graded Plates
,”
Int. J. Numer. Methods Eng.
0029-5981,
47
, pp.
663
684
.
12.
Shafiee
,
H.
,
Naei
,
M. H.
, and
Eslami
,
M. R.
, 2006, “
In-Plane and Out-of-Plane Buckling of Arches Made of FGM
,”
Int. J. Mech. Sci.
0020-7403,
48
, pp.
907
915
.
13.
Reddy
,
J. N.
, and
Chin
,
C. D.
, 1998, “
Thermo-Mechanical Analysis of Functionally Graded Cylinders and Plates
,”
J. Therm. Stresses
0149-5739,
21
, pp.
593
626
.
14.
Brush
,
D. O.
, and
Almroth
,
B. O.
, 1975,
Buckling of Bars, Plates and Shells
,
McGraw-Hill
,
New York
, Chap. 3.
15.
Najafizadeh
,
M. M.
, and
Eslami
,
M. R.
, 2002, “
Buckling Analysis of Circular Plates of Functionally Graded Materials Under Uniform Radial Compression
,”
Int. J. Mech. Sci.
0020-7403,
44
, pp.
2479
2493
.
16.
Timoshenko
,
S.
, and
Woinowsky-Krieger
,
S.
, 1959,
Theory of Plates and Shells
,
2nd ed.
,
McGraw-Hill
,
New York
, Chap. 2.
17.
Dumir
,
P. C.
,
Kumar
,
C. R.
, and
Gandhi
,
M. L.
, 1985, “
Non-Linear Axisymmetric Vibration of Orthotropic Thin Circular Plates on Elastic Foundations
,”
J. Sound Vib.
0022-460X,
103
, pp.
273
285
.
You do not currently have access to this content.