A high stress gradient occurs in a component when the stress, due to external loading, rises asymptotically. The Weibull failure theory overestimates the probability of failure for components with high stress gradients generated due to the geometric irregularities, material mismatch, thermal mismatch, and contact loading. A modified Weibull failure theory is proposed in this paper. The method is based on the weight function method. The modified Weibull failure theory was applied to two specimens, and the results showed the ability of the proposed theory to handle high stress gradients. The theory considers variable equivalent stress intensity factors along the faces of cracks; hence, it considers the strength of a specimen to be dependent on the stress field.

1.
Suwito
,
W.
,
Dunn
,
M. L.
, and
Cunningham
,
S. J.
, 1998, “
Fracture Initiation at Sharp Notches in Single Crystal Silicon
,”
J. Appl. Phys.
0021-8979,
83
(
7
), pp.
3574
3582
.
2.
Akisanya
,
A. R.
, 1997, “
On the Singular Stress Field Near the Edge of Bonded Joints
,”
J. Strain Anal. Eng. Des.
0309-3247,
32
(
4
), pp.
301
311
.
3.
Brückner-Foit
,
A.
,
Hülsmeier
,
P.
,
Diegele
,
E.
,
Rettig
,
U.
, and
Hohmann
,
C.
, 2002, “
Simulating the Failure of Ceramic Components Under Gas Turbine Conditions
,”
Proceedings of ASME Turbo Expo
,
Amsterdam, The Netherlands
, p.
11
.
4.
Fett
,
T.
,
Ernst
,
E.
,
Munz
,
D.
,
Badenheim
,
D.
, and
Oberacker
,
R.
, 2003, “
Weibull Analysis of Ceramics Under High Stress Gradients
,”
J. Eur. Ceram. Soc.
0955-2219,
23
(
12
), pp.
2031
2037
.
5.
Towse
,
A.
,
Potter
,
K. D.
,
Wisnom
,
M. R.
, and
Adams
,
R. D.
, 1999, “
The Sensitivity of a Weibull Failure Criterion to Singularity Strength and Local Geometry Variations
,”
Int. J. Adhes. Adhes.
0143-7496,
19
(
1
), pp.
71
82
.
6.
Brückner-Foit
,
A.
,
Hülsmeier
,
P.
,
Sckuhr
,
M.
, and
Riesch-Oppermann
,
H.
, 2000, “
Limitations of the Weibull Theory in Stress Fields With Pronounced Stress Gradients
,”
Proceedings of ASME Turbo Expo
,
Munich, Germany
, pp.
1
5
.
7.
Wellman
,
G. W.
, 2002 “
Failprob: A Computer Program to Compute the Probability of Failure of a Brittle Component
,” Sandia National Laboratories Technical Report No. SAND2002-0409, Albuquerque, NM.
8.
Atzori
,
B.
,
Filippi
,
S.
,
Lazzarin
,
P.
, and
Berto
,
F.
, 2005, “
Stress Distributions in Notched Structural Components Under Pure Bending and Combined Traction and Bending
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
28
(
1–2
), pp.
13
23
.
9.
Fett
,
T.
,
Pham
,
V. B.
, and
Bahr
,
H. A.
, 2004, “
Weight Functions for Kinked Semi-Infinite Cracks
,”
Eng. Fract. Mech.
0013-7944,
71
(
13–14
), pp.
1987
1995
.
10.
Su
,
B.
,
Lee
,
Y. C.
, and
Dunn
,
M. L.
, 2003, “
Die Cracking at Solder (In60-Pb40) Joints on Brittle (Gaas) Chips: Fracture Correlation Using Critical Bimaterial Interface Corner Stress Intensities
,”
ASME J. Electron. Packag.
1043-7398,
125
(
3
), pp.
369
377
.
11.
Hurd
,
D. S.
,
Caretta
,
R.
, and
Gerberich
,
W. W.
, 1995, “
An Experimental Fracture-Mechanics Study of a Strong Interface—The Silicon Glass Anodic Bond
,”
J. Mater. Res.
0884-2914,
10
(
2
), pp.
387
400
.
12.
Banks-Sills
,
L.
, and
Sherer
,
A.
, 2002, “
A Conservative Integral for Determining Stress Intensity Factors of a Bimaterial Notch
,”
Int. J. Fract.
0376-9429,
115
(
1
), pp.
1
26
.
13.
Ekwaro-Osire
,
S.
,
Khandaker
,
M. P. H.
, and
Gautam
,
K.
, 2005, “
Probabilistic Analysis of Notched Micro Specimen Under Three-Point Loading
,”
ASME International Design Engineering Technical Conferences and the Computers and Information in Engineering Conference
,
Long Beach
,
CA
.
14.
Fett
,
T.
, and
Munz
,
D.
, 1997,
Stress Intensity Factors and Weight Functions
Computational Mechanics Publications
,
Southampton, UK
.
15.
Wu
,
X.-R.
, and
Carlsson
,
J.
, 1991,
Weight Functions and Stress Intensity Factor Solutions
,
1st ed.
,
Pergamon
,
New York
.
16.
Dunn
,
M. L.
,
Cunningham
,
S. J.
, and
Labossiere
,
P. E. W.
, 2000, “
Initiation Toughness of Silicon∕Glass Anodic Bonds
,”
Acta Mater.
1359-6454,
48
(
3
), pp.
735
744
.
17.
Knesl
,
Z.
, 1991, “
A Criterion of v-Notch Stability
,”
Int. J. Fract.
0376-9429,
48
(
4
), pp.
R79
R83
.
18.
Fok
,
S. L.
,
Mitchell
,
B. C.
,
Smart
,
J.
, and
Marsden
,
B. J.
, 2001, “
A Numerical Study on the Application of the Weibull Theory to Brittle Materials
,”
Eng. Fract. Mech.
0013-7944,
68
(
10
), pp.
1171
1179
.
19.
Dortmans
,
L.
,
Thiemeier
,
T.
,
Brückner-Foit
,
A.
, and
Smart
,
J.
, 1993, “
Welfep: A Round Robin for Weakest-Link Finite Element Postprocessors
,”
J. Eur. Ceram. Soc.
0955-2219,
11
(
1
), pp.
17
22
.
20.
Ekwaro-Osire
,
S.
,
Khandaker
,
M. P. H.
,
Gautam
,
K.
, and
Lolge
,
G.
, 2006, “
Effect of Reference Loading and Crack Configuration on the Stress Intensity Factors in Weight Function Method
,”
Int. J. Fract.
0376-9429,
139
, pp.
553
560
.
21.
Brückner
,
A.
, and
Munz
,
D.
, 1983, “
Prediction of Failure Probabilities for Cleavage Fracture From the Scatter of Crack Geometry and of Fracture-Toughness Using the Weakest Link Model
,”
Eng. Fract. Mech.
0013-7944,
18
(
2
), pp.
359
375
.
22.
Bagdahn
,
J.
,
Sharpe
,
W. N.
, and
Jadaan
,
O.
, 2003, “
Fracture Strength of Polysilicon at Stress Concentrations
,”
J. Microelectromech. Syst.
1057-7157,
12
(
3
), pp.
302
312
.
23.
Powers
,
L. M.
, and
Nemeth
,
N. N.
, 1991, “
A Round Robin for Weakest-Link Finite Element Postprocessors (Welfep)
,” NASA, unpublished document.
24.
Fett
,
T.
,
Tilscher
,
M.
, and
Munz
,
D.
, 1997, “
Weight Functions for Cracks Near the Interface of a Bimaterial Joint, and Application to Thermal Stresses
,”
Eng. Fract. Mech.
0013-7944,
56
(
1
), pp.
87
100
.
25.
Gerguri
,
S.
,
Fellows
,
L. J.
,
Durodola
,
J. F.
,
Fellows
,
N. A.
,
Hutchinson
,
A. R.
, and
Dickerson
,
T.
, 2004, “
Prediction of Brittle Failure of Notched Graphite and Silicon Nitride Bars
,”
Advances in Experimental Mechanics
,
Applied Mechanics and Materials
,
M.
Lucas
, ed.,
Trans. Tech. Publications
,
Switzerland
, Vol.
1–2
, pp.
113
119
.
26.
Licht
,
V.
,
Hulsmeier
,
P.
, and
Fett
,
T.
, 2004, “
Probability of Cone Crack Initiation Due to Spherical Contact Loading
,”
J. Eur. Ceram. Soc.
0955-2219,
24
(10–11), pp.
2907
2915
.
You do not currently have access to this content.