Cyclic stress-strain measurements have to be performed in order to determine the cyclic plasticity parameters of material models describing the Bauschinger effect. For thin wires, the performance of tensile tests is often not possible due to necking of the specimen on exceeding the yield stress, whereas compression tests are uncritical. This paper presents an approach to determine the cyclic plasticity parameters by performance of compression tests for wires before and after drawing. Here, a simple analogous model is used instead of finite-element (FE) simulations. This approach has been applied for two different integration time steps in order to evaluate their influence on the fit and the accuracy of the integration. It is shown that good accuracy can be obtained for the cyclic plasticity parameters. For FE simulations using larger integration time steps, large deviations have been noted. However, there the analogous model could also be adopted in order to find appropriate model parameters. In general, it is the intention of this paper to show that searching an analogous model can be a very time- and cost-saving task.

1.
Demtröder
,
W.
, 2006,
Experimentalphysik 1: Mechanik und Wärme
,
4th ed.
,
Springer
, Berlin.
2.
Demtröder
,
W.
, 2006,
Experimentalphysik 2: Elektrizität und Optik
,
3rd ed.
,
Springer
, Berlin.
3.
Weygand
,
S.
,
Riedel
,
H.
,
Eberhard
,
B.
, and
Wouters
,
G.
, 2005, “
Numerical Simulation of the Drawing Process of Tungsten Wires
,” 16th International Plansee Seminar, Vol
1
, Plansee AG, Reutte, Österreich, pp.
55
66
.
4.
Bhattacharyya
,
A.
,
Rittel
,
D.
, and
Ravichandran
,
G.
, 2006, “
Strain Effect on the Evolution of Deformation Texture for α‐Fe
,”
Metall. Mater. Trans. A
1073-5623,
37A
, pp.
1137
1145
.
5.
Cady
,
C.
,
Gray
,
G.
,
Chen
,
S.
,
Field
,
R.
,
Korzewka
,
D.
,
Hixson
,
R.
, and
Lopez
,
M.
, 2006, “
Influence of Temperature, Strain Rate and Thermal Aging on the Structure/Property Behaviour of Uranium 6 wt% Nb
,”
J. Phys. IV
1155-4339,
134
, pp.
203
208
.
6.
Hahn
,
G.
, 1962, “
A Model for Yielding With Special Reference to the Yield-Point Phenomena of Iron and Related bcc Materials
,”
Acta Metall.
0001-6160,
10
, pp.
727
738
.
7.
Schenk
,
T.
, 2006, “
Deformation Behavior of Tungsten and Crack Propagation in Thin Tungsten Wires
,” Masters thesis, Fraunhofer IWM, Freiburg, Germany.
8.
Fossum
,
F.
, 1997, “
Parameter Estimation for an Internal Variable Model Using Nonlinear Optimization and Analytical/Numerical Response Sensitivities
,”
ASME J. Eng. Mater. Technol.
0094-4289,
119
, pp.
337
345
.
9.
Rodriguez
,
M.
, 2005, “
Characterization of Tungsten Wires
,” Masters thesis, Fraunhofer IWM, Freiburg.
10.
Lemaitre
,
J.
, and
Chaboche
,
J.-L.
, 1990,
Mechanics of Solid Materials
,
Cambridge University Press
, New York.
11.
Chaboche
,
J.-L.
, 1991, “
On Some Modifications of Kinematic Hardening to Improve the Description of Ratchetting Effects
,”
Int. J. Plast.
0749-6419,
7
, pp.
661
678
.
12.
Siebel
,
E.
, and
Gaier
,
M.
, 1956, “
Untersuchungen über den Einfluss der Oberflächenbeschaffenheit auf die Dauerschwingfestigkeit metallischer Bauteile bei Raumtemperatur
,”
VDI Z. (1857-1968)
0372-453X,
98
, pp.
1715
1723
.
13.
Simo
,
J.
, and
Hughes
,
T.
, 1998,
Computational Inelasticity
,
Springer
, Berlin.
14.
ABAQUS V6.6 Documentation.
15.
Hughes
,
T.
, and
Winget
,
J.
, 1980, “
Finite Rotation Effects in Numerical Integration of Rate Constitutive Equations Arising in Large-Deformation Analysis
,”
Int. J. Numer. Methods Eng.
0029-5981,
15
, pp.
1862
1867
.
16.
Press
,
W. H.
,
Flannery
,
B. P.
,
Teukolsky
,
S. A.
, and
Vetterling
,
W. T.
, 1992,
Numerical Recipes in C
,
2nd ed.
,
Cambridge University Press
, New York.
17.
Eadie
,
W. T.
, and
Drijard
,
D.
, 1988,
Statistical Methods in Experimental Physics
, 3rd Reprint
North-Holland Physics Publishing
, Amsterdam.
18.
Schenk
,
T.
, 2005, “
Development of a Fit Library
,” Fraunhofer IWM Report, available at IWM library.
19.
Koza
,
J.
, 1993, “
Introduction to Genetic Programming
,”
Advances in Genetic Programming
,
The MIT Press
, Cambridge, MA, Chap. 2, pp.
21
45
.
20.
Scheday
,
G.
, 2003, “
Theorie und Numerik der Parameteridentifikation von Materialmodellen der finiten Elastizität und Inelastizität auf der Grundlage optischer Feldmeßmethoden
,” Ph.D. thesis, University of Stuttgart, Germany.
21.
Mahnken
,
R.
, and
Stein
,
E.
, 1994, “
The Identification of Parameters for Visco-Plastic Models via Finite-Element Methods and Gradient Methods
,”
Modell. Simul. Mater. Sci. Eng.
0965-0393,
2
, pp.
597
616
.
You do not currently have access to this content.