Nano-Y2O3 particulates containing ductile magnesium nanocomposites were synthesized using blend-press-sinter powder metallurgy technique followed by hot extrusion. Microstructural characterization of the nanocomposite samples showed fairly uniform reinforcement distribution, good reinforcement-matrix interfacial integrity, significant grain refinement of magnesium matrix with increasing presence of reinforcement, and the presence of minimal porosity. Mechanical properties characterization revealed that the presence of nano-Y2O3 reinforcement leads to marginal increases in hardness, 0.2% yield strength and ultimate tensile strength, but a significant increase in ductility and work of fracture of magnesium. The fracture mode was changed from brittle for pure Mg to mix ductile and intergranular in the case of nanocomposites.

1.
Kainer
,
K. U.
, 2003,
Die-Casting Magnesium, Magnesium-Alloys and Technologies
,
Wiley-VCH Verlag GmbH & Co.
, Weinham, Germany.
2.
Magers
,
D.
, and
Brussels
,
J.
, 1998, “
Global Outlook on the Use of Magnesium Die-Casting in Automotive Applications
,” in
Proceeding of Conference on Magnesium Alloys and Their Applications
,
B. L.
Mordike
,
K. U.
Kainer
, eds.,
Werkstoff-Informationsge-Sellschaft
, Wolfsburg, Germany, pp.
105
112
.
3.
Lloyd
,
D. J.
, 1994, “
Particle Reinforced Aluminum and Magnesium Matrix Composites
,”
Int. Mater. Rev.
0950-6608,
39
(
1
), pp.
1
23
.
4.
Saravanan
,
R. A.
, and
Surappa
,
M. K.
, 2000, “
Fabrication and Characterization of Pure Magnesium-30 vol.% SiCP Particle Composite
,”
Mater. Sci. Eng., A
0921-5093,
276
, pp.
108
116
.
5.
Gupta
,
M.
,
Lai
,
M. O.
, and
Saravanaranganathan
,
D.
, 2000, “
Synthesis, Microstructure and Properties Characterization of Disintegrated Melt Deposited Mg∕SiC Composites
,”
J. Mater. Sci.
0022-2461,
35
, pp.
2155
2165
.
6.
Han
,
B. Q.
, and
Dunand
,
D. C.
, 2000, “
Microstructure and Mechanical Properties of Magnesium Containing High Volume Fractions of Yttria Dispersoids
,”
Mater. Sci. Eng., A
0921-5093,
277
, pp.
297
304
.
7.
Hassan
,
S. F.
, and
Gupta
,
M.
, 2002, “
Development of High Strength Magnesium Based Composites Using Elemental Nickel Particulates as Reinforcement
,”
J. Mater. Sci.
0022-2461,
37
, pp.
2467
2474
.
8.
Garces
,
G.
,
Rodríguez
,
M.
,
Perez
,
P.
, and
Adeva
,
P.
, 2006, “
Effect of Volume Fraction and Particle Size on the Microstructure and Plastic Deformation of Mg-Y2O3 Composites
,”
Mater. Sci. Eng., A
0921-5093,
419
, pp.
357
364
.
9.
Hassan
,
S. F.
, and
Gupta
,
M.
, 2002, “
Development of a Ductile Magnesium Composite Materials Using Titanium as Reinforcement
,”
J. Alloys Compd.
0925-8388,
345
(
1–2
), pp.
246
251
.
10.
Unverricht
,
R.
,
Peitz
,
V.
,
Riehemann
,
W.
, and
Ferkel
,
H.
, 1998, “
Dispersion-Strengthening of Magnesium by Nanoscaled Ceramic Powder
,” Conference on Magnesium Alloys and Their Applications, April 28–30, Wolfsburg, Germany, pp.
327
332
.
11.
Singh
,
A.
,
Nakamura
,
M.
,
Watanabe
,
M.
,
Kato
,
A.
, and
Tsai
,
A. P.
, 2003, “
Quasicrystal Strengthened Mg-Zn-Y Alloys by Extrusion
,”
Scr. Mater.
1359-6462,
49
, pp.
417
422
.
12.
Hassan
,
S. F.
, and
Gupta
,
M.
, 2004, “
Development of High-Performance Magnesium Nano-Composites Using Solidification Processing Route
,”
Mater. Sci. Technol.
0267-0836,
20
, pp.
1383
1388
.
13.
Hassan
,
S. F.
, and
Gupta
,
M.
, 2005, “
Development of High Performance Magnesium Nano-Composites Using nano-Al2O3 as Reinforcement
,”
Mater. Sci. Eng., A
0921-5093,
392
, pp.
163
168
.
14.
Hassan
,
S. F.
, and
Gupta
,
M.
, 2006, “
Effect of Different Types of Nano-size Oxide Particulates on Microstructural and Mechanical Properties of Elemental Mg
,”
J. Mater. Sci.
0022-2461,
41
, pp.
2229
2236
.
15.
Reed-Hill
,
R. E.
, 1964,
Physical Metallurgy Principles
,
2nd ed.
D. Van Nostrand Company
, New York.
16.
Eustathopoulos
,
N.
,
Nicholas
,
M. G.
, and
Drevet
,
B.
, 1999,
Wettability at High Temperatures
,
Pergamon Materials Series
, Vol.
3
,
Pergamon Press
, London.
17.
Gilchrist
,
J. D.
, 1989,
Extraction Metallurgy
,
3rd ed.
Pergamon Press
, London.
18.
Tan
,
M. J.
, and
Zhang
,
X.
, 1998, “
Powder Metal Matrix Composites: Selection and Processing
,”
Mater. Sci. Eng., A
0921-5093,
244
, pp.
80
85
.
19.
Shewmon
,
P. G.
, 1969,
Transformation in Metals
,
McGraw-Hill Book Company
, New York.
20.
Hassold
,
G. N.
,
Holm
,
E. A.
, and
Srolovitz
,
D. J.
, 1990, “
Effects of Particle Size on Inhibited Grain Growth
,”
Scr. Metall. Mater.
0956-716X,
24
, pp.
101
106
.
21.
German
,
R. M.
,
Powder Metallurgy Science
2nd ed.
,
Metal Powder Industries Federation
, Princeton, NJ.
22.
Murr
,
L. E.
, 1975,
Interfacial Phenomena in Metals and Alloys
,
Addison-Wesley
, MA.
23.
Naser
,
J.
,
Riehemann
,
W.
, and
Ferkel
,
H.
, 1997, “
Dispersion Hardening of Metals by Nanoscaled Ceramic Powder
,”
Mater. Sci. Eng., A
0921-5093,
234–236
, pp.
467
469
.
24.
Bauccio
,
M.
, 1993,
ASM Metal Reference Book
,
3rd ed.
ASM International
, Materials Park, OH.
25.
Touloukian
,
Y. S.
, 1967,
Thermophysical Properties of High Temperature Solid Materials
,
Purdue University
, West Latayette IN.
26.
Ashby
,
M. F.
, and
Jones
,
D. R. H.
, 1996,
Engineering Materials I
,
Butterworth-Heinemann
, Oxford.
27.
Gupta
,
M.
, and
Srivatsan
,
T. S.
, 1999, “
Microstructure and Grain Growth Behavior of an Aluminum Alloy Metal Matrix Composite Processed by Disintegrated Melt Deposition
,”
J. Mater. Eng. Perform.
1059-9495,
8
(
4
), pp.
473
478
.
28.
Cahn
,
R. W.
, 1970,
Physical Metallurgy
,
North-Holland Publishing Company
, Amsterdam.
29.
Wua
,
F.
,
Zhua
,
J.
,
Chen
,
Y.
, and
Zhang
,
G.
, 2000, “
The Effects of Processing on the Microstructures and Properties of Gr∕Mg Composites
,”
Mater. Sci. Eng., A
0921-5093,
277
, pp.
143
147
.
30.
Bocchini
,
G. F.
, 1986, “
The Influence of Porosity on the Characteristics of Sintered Materials
,”
Int. J. Powder Metall.
0020-7535,
22
(
3
), pp.
185
202
.
31.
Yang
,
W.
, and
Lee
,
W. B.
, 1993,
Mesoplasticity and its Applications
,
Springer-Verlag
, Berlin.
32.
Pérez
,
P.
,
Garcés
,
G.
, and
Adeva
,
P.
, 2004, “
Mechanical Properties of a Mg-10 (vol.%)Ti Composite
,”
Compos. Sci. Technol.
0266-3538,
64
(
1
), pp.
145
151
.
33.
Koike
,
J.
,
Kobayashi
,
T.
,
Mukai
,
T.
,
Watanabe
,
H.
,
Suzuki
,
M.
,
Maruyama
,
K.
, and
Higashi
,
K.
, 2003, “
The Activity of Non-basal Slip Systems and Dynamic Recovery at Room Temperature in Fine-Grained AZ31B Magnesium Alloys
,”
Acta Mater.
1359-6454,
51
, pp.
2055
2065
.
You do not currently have access to this content.