An equivalent orthotropic representation (EOR) of the nonlinear elastic behavior of multiwalled carbon nanotubes (MWCNTs) was developed based on a nested shell structural representation of MWCNTs. The EOR model was used together with the finite element method to simulate the large deformation of MWCNTs under bending, axial compression and radial compression. Results were compared with those of the nested shell model for four-, eight-, nine-, 14-, and 19-walled carbon nanotubes. The EOR model provides a dramatic improvement in computational efficiency and successfully quantitatively replicates the overall deformation behavior including the initial linear elastic behavior, the onset of local buckling, and the post-buckling compliance. The proposed EOR model together with the finite element method offers a computationally efficient method for simulating large and complex systems of MWCNTs.

1.
Iijima
,
S.
, 1991, “
Helical Microtubules of Graphitics Carbon
,”
Nature (London)
0028-0836,
354
, pp.
56
58
.
2.
Zhao
,
X.
,
Liu
,
Y.
,
Inoue
,
S.
,
Suzuki
,
T.
,
Jones
,
R. O.
, and
Ando
,
Y.
, 2004, “
Smallest Carbon Nanotube is 3Å in Diameter
,”
Phys. Rev. Lett.
0031-9007,
92
(
12
), p.
125502
.
3.
Qi
,
H. J.
,
Teo
,
K. B. K.
,
Lau
,
K.
,
Boyce
,
M. C.
,
Milne
,
W. I.
,
Robertson
,
J.
, and
Gleason
,
K. K.
, 2003, “
Determination of Mechanical Properties of Carbon Nanotubes and Vertical Aligned Carbon Nanotubes Forests Using Nanoindentation
,”
J. Mech. Phys. Solids
0022-5096,
51
, pp.
2213
2237
.
4.
Xia
,
H. S.
,
Xia
,
H.
,
Wang
,
Q.
,
Li
,
K.
, and
Hu
,
G. H.
, 2004, “
Preparation of Polypropylene/Carbon Nanotube Composite Powder With a Solid-State Mechanochemical Pulverization Process
,”
J. Appl. Polym. Sci.
0021-8995,
93
(
1
), pp.
378
386
.
5.
Song
,
Y. S.
, and
Youn
,
J. R.
, 2005, “
Influence of Dispersion States of Carbon Nanotubes on Physical Properties of Epoxy Nanocomposites
,”
Carbon
0008-6223,
43
, pp.
1378
1385
.
6.
Baughman
,
R. H.
,
Zakhidov
,
A. A.
, and
Heer
,
W. A.
, 2002, “
Carbon Nanotubes—The Route Toward Applications
,”
Science
0036-8075,
297
(
5582
), pp.
787
792
.
7.
Seidel
,
R. V.
,
Graham
,
A. P.
,
Kretz
,
J.
,
Rajasekharan
,
B.
,
Duesberg
,
G. S.
,
Liebau
,
M.
,
Unger
,
E.
,
Kreupl
,
F.
, and
Hoenlein
,
W.
, 2005, “
Sub-20nm Short Channel Carbon Nanotube Transistors
,”
Nano Lett.
1530-6984,
5
(
1
), pp.
147
150
.
8.
Iijima
,
S.
,
Brabec
,
C.
,
Maiti
,
A.
, and
Bernholc
,
J.
, 1996, “
Structural Flexibility of Carbon Nanotubes
,”
J. Chem. Phys.
0021-9606,
104
, pp.
2089
2092
.
9.
Liew
,
K. M.
,
Wong
,
C. H.
,
He
,
X. Q.
,
Tan
,
M. J.
, and
Meguid
,
S. A.
, 2004, “
Nanomechanics of Single and Multiwalled Carbon Nanotubes
,”
Phys. Rev. B
0163-1829,
69
,
115429
.
10.
Xiao
,
J. R.
,
Gama
,
B. A.
, and
Gillespie
,
J. W.
, Jr.
, 2005, “
An Analytical Molecular Structural Mechanics Model for the Mechanical Properties of Carbon Nanotubes
,”
Int. J. Solids Struct.
0020-7683,
42
, pp.
3075
3092
.
11.
Yakobson
,
B. I.
,
Brabec
,
C. J.
, and
Bernholc
,
J.
, 1996, “
Nanomechanics of Carbon Tubes: Instabilities Beyond Linear Range
,”
Phys. Rev. Lett.
0031-9007,
76
, pp.
2511
2514
.
12.
Pantano
,
A.
,
Boyce
,
M. C.
, and
Parks
,
D. M.
, 2004, “
Mechanics of Axial Compression of Single and Multi-Wall Carbon Nanotubes
,”
J. Eng. Mater. Technol.
0094-4289,
126
, pp.
279
284
.
13.
Pantano
,
A.
,
Parks
,
D. M.
, and
Boyce
,
M. C.
, 2003, “
Nonlinear Structural Mechanics Based Modeling of Carbon Nanotube Deformation
,”
Phys. Rev. Lett.
0031-9007,
91
(
14
),
145504
.
14.
Pantano
,
A.
,
Parks
,
D. M.
, and
Boyce
,
M. C.
, 2004, “
Mechanics of Deformation of Single- and Multi-Wall Carbon Nanotubes
,”
J. Mech. Phys. Solids
0022-5096,
52
, pp.
789
821
.
15.
Zhao
,
Y. X.
, and
Spain
,
I. L.
, 1989, “
X-Ray-Diffraction Data for Graphite to 20GPa
,”
Phys. Rev. B
0163-1829,
40
(
2
), pp.
993
997
.
16.
Cummings
,
J.
, and
Zettl
,
A.
, 2000, “
Low Friction Nanoscale Linear Bearing Realized From Multiwall Carbon Nanotubes
,”
Science
0036-8075,
289
, pp.
602
604
.
17.
Bower
,
C.
,
Rosen
,
R.
,
Jin
,
L.
,
Han
,
J.
, and
Zhou
,
O.
, 1999, “
Deformation of Carbon Nanotubes in Nanotube-Polymer Composites
,”
Appl. Phys. Lett.
0003-6951,
74
, pp.
3317
3319
.
18.
Falvo
,
M. R.
,
Clary
,
G. J.
,
Taylor
,
R. M.
, II
,
Chi
,
V.
,
Brooks
,
F. P.
,
Washburn
,
S.
, and
Superfine
,
R.
, 1997, “
Bending and Buckling of Carbon Nanotubes Under Large Strain
,”
Nature (London)
0028-0836,
389
(
6651
), pp.
582
584
.
19.
Poncharal
,
P.
,
Wang
,
Z. L.
,
Ugarte
,
D.
, and
de Heer
,
W. A.
, 1999, “
Electrostatic Deflections and Electromechanical Resonances of Carbon Nanotubes
,”
Science
0036-8075,
283
(
5407
), pp.
1513
1516
.
20.
Timoshenko
,
S.
, 1936,
Theory of Elastic Stability
,
McGraw-Hill
, New York.
21.
Liu
,
J. Z.
,
Zheng
,
Q.
, and
Jiang
,
Q.
, 2001, “
Effect of a Rippling Mode on Resonances of Carbon Nanotubes
,”
Phys. Rev. Lett.
0031-9007,
86
, pp.
4843
4846
.
22.
Liu
,
J. Z.
,
Zheng
,
Q.
, and
Jiang
,
Q.
, 2003, “
Effect of Bending Instabilities on the Measurements of Mechanical Properties of Multiwalled Carbon Nanotubes
,”
Phys. Rev. B
0163-1829,
67
,
075414
.
23.
Wang
,
X. Y.
, and
Wang
,
X.
, 2004, “
Numerical Simulation for Bending Modulus of Carbon Nanotubes and Some Explanations for Experiment
,”
Composites, Part B
1359-8368,
35
, pp.
79
86
.
24.
Wang
,
X.
,
Wang
,
X. Y.
, and
Xiao
,
J.
, 2005, “
A Non-Linear Analysis of the Bending Modulus of Carbon Nanotubes With Rippling Deformations
,”
Compos. Struct.
0263-8223,
69
, pp.
315
321
.
25.
Wang
,
X.
,
Zhang
,
Y. C.
,
Xia
,
X. H.
, and
Huang
,
C. H.
, 2004, “
Effective Bending Modulus of Carbon Nanotubes With Rippling Deformation
,”
Int. J. Solids Struct.
0020-7683,
41
, pp.
6429
6439
.
26.
Yu
,
M. F.
,
Yakobson
,
B. I.
, and
Ruoff
,
R. S.
, 2000, “
Controlled Sliding and Pullout of Nested Shells in Individual Multiwalled Carbon Nanotubes
,”
J. Phys. Chem. B
1089-5647,
104
, pp.
8764
8767
.
27.
Garg
,
M.
, 2005, “
Mechanics of Deformation of Carbon Nanotubes
,” Master’s Thesis, Massachusetts Institute of Technology, Cambridge, MA.
You do not currently have access to this content.