Abstract

Temporal and spatial characteristics of serrated plastic flow or the so-called Portevin-Le Chatelier (PLC) deformation bands in a commercial Al-2.5%Mg sheet metal due to dynamic strain aging effects were investigated experimentally under quasi-static uniaxial tension. It was found that the thickness and width of test coupons, applied loading conditions (machine stiffness and crosshead speed), and mechanical polishing had an observable effect on the temporal characteristics of the serrated plastic flow while short and long interruptions during the tensile tests with stress relaxation and even completely unloading show minimal effects on the subsequent serrated flow behavior. Serrations in axial load in AA5052-H32 were found to associate with the appearance of discrete narrow deformation bands in the tensile test coupons with the bands aligned 59±1deg with respect to the tensile loading axis. The detailed strain distribution across the deformation bands showed a bell-like instead of steplike shape, indicating that the formation of these deformation bands was controlled by a local nucleation and growth process at a cross section in the polycrystalline sheet.

1.
Cottrell
,
A. H.
, 1953,
Dislocations and Plastic Flow in Crystals
.
Clarendon Press
, Oxford.
2.
Hall
,
E. O.
, 1970,
Yield Point Phenomena in Metals and Alloys
.
MacMillan
, London.
3.
Robinson
,
J. M.
, 1994, “
Serrated Flow in Aluminum Base Alloys
,”
Int. Mater. Rev.
0950-6608,
39
(
6
), pp.
217
227
.
4.
Kubin
,
L. P.
,
Fressengeas
,
C.
, and
Ananthakrishna
,
G.
, 2002, “
Collective Behavior of Dislocations in Plasticity
,”
Dislocation in Solids
,
F. N. N.
Nabarro
, and
J. P.
Hirth
, eds.,
Elsevier
, New York, Vol.
11
, pp.
101
192
.
5.
Weinhandl
,
H.
,
Mitter
,
F.
,
Bernt
,
W.
,
Kumar
,
S.
, and
Pink
,
E.
, 1994, “
Computer-Assisted Recording of Tensile Tests for the Evaluation of Serrated Flow
,”
Scr. Metall. Mater.
0956-716X,
31
(
11
), pp.
1567
1572
.
6.
Pink
,
E.
,
Bruckbauer
,
P.
, and
Weinhandl
,
H.
, 1998. “
Stress-Drop Rates in Serrated Flow of Aluminum Alloys
,”
Scr. Mater.
1359-6462,
38
(
6
), pp.
945
951
.
7.
Chihab
,
K.
, and
Fressengeas
,
C.
, 2003, “
Time Distribution of Stress Drops, Critical Strain and Crossover in the Dynamics of Jerky Flow
.”
Mater. Sci. Eng., A
0921-5093,
356
, pp.
102
107
.
8.
Tong
,
W.
, 1997. “
Detection of Plastic Deformation Patterns in a Binary Aluminum Alloy
,”
Exp. Mech.
0014-4851,
37
(
4
), pp.
452
459
.
9.
Tong
,
W.
, 1998, “
Strain Characterization of Propagative Deformation Bands
,”
J. Mech. Phys. Solids
0022-5096,
46
(
10
), pp.
2087
2102
.
10.
Smith
,
B. W.
,
Li
,
X.
, and
Tong
,
W.
, 1998, “
Error Assessment for Strain Mapping by Digital Image Correlation
,”
Exp. Tech.
0732-8818,
22
(
4
), pp.
19
21
.
11.
Tong
,
W.
, and
Li
,
X.
, 1999, “
Evaluation of Two Plastic Strain Mapping Methods
,”
Proc. of the SEM Annual Conf.
, Cincinnati, pp.
23
26
.
12.
Li
,
X.
, 2001, “
Spatial Characterization and Modeling of Unstable Plastic Flow Patterns in Two Aluminum Alloys
,” Ph.D. thesis, Yale University, New Haven.
13.
Caron
,
R. N.
, and
Staley
,
J. T.
, 1997, “
Effects of Composition, Processing and Structure on Aluminum Alloys
,”
Materials Selection and Design
, ASM Metals Handbook, Vol.
20
, Materials Park, OH, pp.
383
415
.
14.
Chihab
,
K.
,
Estrin
,
Y.
,
Kubin
,
L. P.
, and
Vergnol
,
J.
, 1987, “
The Kinectics of the Portevin-Le Chatelier Bands in an Al-5at.%Mg Alloy
,”
Scr. Metall.
0036-9748
21
, pp.
203
208
.
15.
Schwarz
,
R. B.
, and
Funk
,
L. L.
, 1985, “
Kinetics of the Portevin-Le Chatelier Effect in Al6061 Alloy
,”
Acta Metall.
0001-6160
33
, pp.
295
307
.
16.
Faciu
,
C.
,
Molinari
,
A.
,
Dablij
,
M.
, and
Zeghloul
,
A.
, 1998, “
A New Rate-Type Gradient-Dependent Viscoplastic Approach for Stop-and-Go Strain Band Propagation: Numerical vs. Physical Experiments
,”
J. Phys. IV
1155-4339,
8
, pp.
Pr8
-143–
150
.
17.
Lebyodkin
,
M.
,
Dunin-Barkowskii
,
L.
,
Brechet
,
Y.
,
Estrin
,
Y.
, and
Kubin
,
L. P.
, 2000, “
Spatio-Temporal Dynamics of the Portevin-Le Chatelier Effect: Experiment and Modeling
,”
Acta Mater.
1359-6454,
48
, pp.
2529
2541
.
18.
Wen
,
W.
, and
Morris
,
J. G.
, 2003, “
An Investigation of Serrated Yielding in 5000 Series in Aluminum Alloys
Mater. Sci. Eng., A
0921-5093,
354
, pp.
279
285
.
19.
Tong
,
W.
,
Tao
,
H.
,
Zhang
,
N.
, and
Hector
,
L. G.
, 2005, “
Time-Resolved Strain Mapping Measurements of Individual Portevin-Le Chatelier Deformation Bands
,”
Scr. Mater.
1359-6462,
53
(
1
), pp.
87
92
.
20.
Hahner
,
P.
,
Ziegenbein
,
A.
, and
Neuhauser
,
H.
, 2001, “
Observation and Modeling of Propagating Portevin-Le Chatelier Deformation Bands in Cu-15at.%Al polycrystals
,”
Philos. Mag. A
0141-8610,
81
, pp.
1633
1649
.
21.
Klose
,
F. B.
,
Ziegenbein
,
A.
,
Hagemann
,
F.
,
Neuhauser
,
H.
,
Hahner
,
P.
,
Abbadi
,
M.
, and
Zeghloul
,
A.
, 2004, “
Analysis of Portevin-Le Chatelier Serrations of Type B in Al-Mg
,”
Mater. Sci. Eng., A
0921-5093,
369
, pp.
76
81
.
22.
Klose
,
F. B.
,
Weidenmuller
,
J.
,
Ziegenbein
,
A.
,
Hahner
,
P.
, and
Neuhauser
,
H.
, 2004, “
Plastic Instabilities With Propagation Deformation Bands in Cu-Al alloys
,”
Philos. Mag.
1478-6435,
A84
, pp.
467
480
.
23.
Rizzi
,
E.
, and
Hahner
,
P.
, 2004, “
On the Portevin-Le Chatelier Effect: Theoretical Modeling and Numerical Results
,”
Int. J. Plast.
0749-6419,
20
, pp.
121
165
.
24.
Ananthakrishna
,
G.
, and
Bharathi
,
M. S.
, 2004, “
Dynamical Approach to the Spatiotemporal Aspects of the Portevin-Le Chatelier Effect: Chaos, Turbulence, and Band Propagation
,”
Phys. Rev. E
1063-651X,
70
(
2
),
026111
1
.
25.
Hill
,
R.
, 1950,
The Mathematical Theory of Plasticity
,
Clarendon Press
, Oxford, p.
324
.
You do not currently have access to this content.