Orthogonal cutting experiments using a quick-stop device are performed on Al2024-T3 and OFHC copper to study the chip–workpiece interface in a scanning electron microscope. Evidence of ductile tearing ahead of the tool at cutting speeds of 150mmin has been found. A numerical finite element model is then developed to study the energy consumed in material separation in micro-cutting. The ductile fracture of Al2024-T3 in a complex stress state ahead of the tool is captured using a damage model. Chip formation is simulated via the use of a sacrificial layer and sequential elemental deletion in this layer. Element deletion is enforced when the accumulated damage exceeds a predetermined value. A Johnson–Cook damage model that is load history dependent and with strain-to-fracture dependent on stress, strain rate, and temperature is used to model the damage. The finite element model is validated using the cutting forces obtained from orthogonal micro-cutting experiments. Simulations are performed over a range of uncut chip thickness values. It is found that at lower uncut chip thickness values, the percentage of energy expended in material separation is higher than at higher uncut chip thicknesses. This work highlights the importance of the energy associated with material separation in the nonlinear scaling effect of specific cutting energy in micro-cutting.

1.
Shaw
,
M. C.
, 2003, “
The Size Effect in Metal Cutting
,”
Sadhana: Proc., Indian Acad. Sci.
0256-2499,
25
(
5
), pp.
875
896
.
2.
Liu
,
K.
, and
Melkote
,
S. N.
, 2006, “
Material Strengthening Mechanisms and Their Contribution to Size Effect in Micro-cutting
,”
J. Manuf. Sci. Eng.
1087-1357,
128
(
3
), pp.
730
738
.
3.
Shaw
,
M. C.
, 1950, “
A Quantized Theory of Strain Hardening as Applied to Cutting of Metals
,”
J. Appl. Phys.
0021-8979,
21
, pp.
599
606
.
4.
Larsen-basse
,
J.
, and
Oxley
,
P. L. B.
, 1973, “
Effect of Strain-Rate Sensitivity on Scale Phenonmenon in Chip Formation
,”
Proceedings 13th International Machine Tool Design and Research Conference
,
University of Birmingham
, Birmingham, UK. pp.
209
216
.
5.
Kopalinsky
,
E. M.
, and
Oxley
,
P. L. B.
, 1984, “
Size Effects in Metal Removal Process
,”
Proceedings 3rd Conference on Mechanical Properties of High Rates of Strain
,
Oxford
, UK, pp.
389
396
.
6.
Dinesh
,
D.
,
Swaminathan
,
S.
,
Chandrasekhar
,
S.
, and
Farris
,
T. N.
, 2001, “
An Intrinsic Size-Effect in Machining due to the Strain Gradient
,”
Proceedings ASME IMECE
,
New York, November 11–16, pp.
197
204
.
7.
Lucca
,
D. A.
,
Rhorer
,
R. L.
, and
Komanduri
,
R.
, 1993, “
Effect of Tool Edge Geometry on Energy Dissipation in Ultraprecision Machining
,”
CIRP Ann.
0007-8506,
42
(
1
), pp.
83
86
.
8.
Komanduri
,
R.
,
Chandrasekaran
,
N.
, and
Raff
,
L. M.
, 1998, “
Effect of Tool Geometry in Nanometric Cutting: A Molecular Dynamics Simulation Approach
,”
Wear
0043-1648,
219
, pp.
84
97
.
9.
Schimmel
,
R. J.
,
Endres
,
W. J.
, and
Stevenson
,
R.
, 2002, “
Application of an Internally Consistent Material Model to Determine the Effect of Tool Edge Geometry in Orthogonal Machining
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
124
, pp.
536
543
.
10.
Nakayama
,
K.
, and
Tamura
,
K.
, 1968, “
Size Effect in Metal-Cutting Force
,”
ASME J. Eng. Ind.
0022-0817,
90
, pp.
119
126
.
11.
Atkins
,
A. G.
, 2003, “
Modelling Metal Cutting Using Modern Ductile Fracture Mechanics: Quantitative Explanations for Some Longstanding Problems
,”
Int. J. Mech. Sci.
0020-7403,
45
, pp.
373
396
.
12.
Madhavan
,
V.
,
Chandrasekhar
,
S.
, and
Farris
,
T. N.
, 2000, “
Machining as a Wedge Indentation
,”
Trans. ASME, J. Appl. Mech.
0021-8936,
67
(
1
), pp.
128
139
.
13.
Shaw
,
M. C.
, 1997,
Metal Cutting Principles
,
Oxford Science Publications
, New York.
14.
Komanduri
,
R.
, and
Brown
,
R. H.
, 1972, “
The Formation of Microcracks in Machining a Low Carbon Steel
,”
Metals and Materials, Bulletin of the Institute of Metals, London
,
6
, pp.
531
533
.
15.
Iwata
,
K.
, and
Ueda
,
K.
, 1976, “
The Significance of Dynamic Crack Behavior in Chip Formation
,”
CIRP Ann.
0007-8506,
25
(
1
), pp.
65
70
.
16.
Subbiah
,
S.
, and
Melkote
,
S. N.
, 2006, “
The Constant Force Component due to Material Separation and its Contribution to the Size-Effect in Specific Cutting Energy
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
128
(
2
), pp.
811
815
.
17.
Marusich
,
T. D.
, and
Ortiz
,
M.
, 1995, “
Modeling and Simulation of High Speed Machining
,”
Int. J. Numer. Methods Eng.
0029-5981,
21
, pp.
3675
3694
.
18.
Ozel
,
T.
, and
Altan
,
T.
, 2000, “
Determination of Workpiece Flow Stress and Friction at the Chip-Tool Contact for High Speed Cutting
,”
Int. J. Mach. Tools Manuf.
0890-6955,
40
, pp.
133
152
.
19.
Liu
,
K.
, 2005, “
Process Modeling of Micro-cutting Including Strain Gradient Effects
,” Ph.D. thesis, Georgia Institute of Technology, Atlanta, CA.
20.
Zhang
,
B.
, and
Bagchi
,
A.
, 1994, “
Finite Element Simulation of Chip Formation and Comparison with Machining Experiment
,”
J. Eng. Ind.
0022-0817,
116
, pp.
289
297
.
21.
Lin
,
Z. C.
, and
Lin
,
S. Y.
, 1992, “
A Coupled Finite Element Model of Thermo-Elastic-Plastic Large Deformation for Orthogonal Cutting
,”
J. Eng. Mater. Technol.
0094-4289,
114
, pp.
218
226
.
22.
Strenkowski
,
J. S.
, and
Carroll
,
J. T.
, 1985, “
A Finite Element Model of Orthogonal Metal Cutting
,”
J. Eng. Ind.
0022-0817,
107
, pp.
349
354
.
23.
Huang
,
J. M.
, and
Black
,
J. T.
, 1996, “
An Evaluation of Chip Separation Criteria for the FEM Simulation of Machining
,”
J. Manuf. Sci. Eng.
1087-1357,
118
, pp.
545
554
.
24.
Tian
,
Y.
, and
Shin
,
Y. C.
, 2004, “
Finite Element Modeling of Machining of 1020 Steel Including Effects of Round Edge
,”
Trans. NAMRI/SME
1047-3025,
32
, pp.
111
118
.
25.
Iwata
,
K.
,
Osakada
,
K.
, and
Terasaka
,
Y.
, 1984, “
Process Modeling of Orthogonal Cutting by Rigid-Plastic Finite Element Method
,”
ASME J. Eng. Mater. Technol.
0094-4289,
106
, pp.
132
138
.
26.
Obikawa
,
T.
, and
Usui
,
E.
, 1996, “
Computational Machining of Titanium Alloy—Finite Element Modeling and a Few Results
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
118
, pp.
208
215
.
27.
Obikawa
,
T.
,
Sasahara
,
S.
,
Shirakashi
,
T.
, and
Usui
,
E.
, 1997, “
An Application of Computational Machining Method to Discontinuous Chip Formation
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
119
, pp.
667
674
.
28.
Benson
,
D. J.
, 1997, “
A Mixture Theory for Contact in Multi-material Eulerian Formulation
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
140
, pp.
59
86
.
29.
Ng
,
E. G.
,
El-Wardany
,
T. I.
,
Dumitrescu
,
M.
, and
Elbastawi
,
M.
, 2002, “
Physics-Based Simulation of High Speed Machining
,”
Mach. Sci. Technol.
1091-0344,
6
(
3
), pp.
301
329
.
30.
Guo
,
Y. B.
, and
Yen
,
D. W.
, 2004, “
A FEM Study on Mechanisms of Discontinuous Chip Formation in Hard Machining
,”
J. Mater. Process. Technol.
0924-0136,
155–156
, pp.
1350
1356
.
31.
Pantale
,
O.
,
Bacaria
,
J. L.
,
Dalverny
,
O.
,
Rakotomalala
,
R.
, and
Caperaa
,
S.
, 2004, “
2D and 3D Numerical Models of Metal Cutting with Damage Effects
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
193
(
39–41
), pp.
4383
4399
.
32.
Rhim
,
S.
, and
Oh
,
S.
, 2006, “
Prediction of Serrated Chip Formation in Metal Cutting Process with New Flow Stress Model for AISI 1045 Steel
,”
J. Mater. Process. Technol.
0924-0136,
171
, pp.
417
422
.
33.
Joshi
,
S. S.
,
Ramakrishnan
,
N.
, and
Ramakrishnan
,
P.
, 2001, “
Micro-structural Analysis of Chip Formation during Orthogonal Machining of Al∕SiCp Composites
,”
J. Eng. Mater. Technol.
0094-4289,
123
, pp.
315
321
.
34.
Ponkshe
,
G. R.
, 1967, “
A New Explanation of the Phenomenon of Chip Curling During Machining
,”
J. Eng. Ind.
0022-0817,
89
, pp.
376
379
.
35.
Black
,
J. T.
, and
James
,
C. R.
, 1981, “
The Hammer QSD-Quick Stop Device for High Speed Machining and Rubbing
,”
J. Eng. Ind.
0022-0817,
103
, pp.
13
21
.
36.
Engel
,
L.
, and
Klingele
,
H.
, 1981,
An Atlas of Metal Damage
,
Prentice–Hall
, Englewood Cliffs, NJ, p.
41
.
37.
Subbiah
,
S.
, and
Melkote
,
S. N.
, 2006, “
Effect of Finite Edge Radius on Ductile Fracture Ahead of the Cutting Tool Edge in Micro-cutting of Al2024-T3
,”
Mater. Sci. Eng., A
0921-5093, submitted.
38.
Lesuer
,
D. R.
, 2000, “
Experimental Investigations of Material Models for Ti-6AL-4V Titanium and 2024-T3 Aluminum
,” Technical Report No. DOT/FAA/AR-00/25, U. S. Department of Transportation Federal Aviation Administration, Washington, D.C.
39.
Kay
,
G.
, 2003, “
Failure Modeling of Titanium Ti-6AL-4V and Aluminum 2024-T3 with the Johnson–Cook Material Model
,” Technical Report No. DOT/FAA/AR-00/25, U. S. Department of Transportation Federal Aviation Administration, Washington, D.C.
40.
Bao
,
Y.
, and
Wierzbicki
,
T.
, 2004, “
A Comparative Study on Various Ductile Crack Formation Criteria
,”
ASME J. Eng. Mater. Technol.
0094-4289,
126
, pp.
314
324
.
41.
Wierzbicki
,
T.
,
Bao
,
Y.
,
Lee
,
Y.-W.
, and
Bai
,
Y.
, 2005, “
Calibration and Evaluation of Seven Fracture Models
,”
Int. J. Mech. Sci.
0020-7403,
47
, pp.
719
743
.
42.
Johnson
,
G. R.
, and
Cook
,
W. H.
, 1985, “
Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures
,”
Eng. Fract. Mech.
0013-7944,
21
(
1
), pp.
31
49
.
43.
Zorev
,
N. N.
, 1963, “
Interrelationship Between Shear Processes Occurring Along Tool Face and on Shear Plane in Metal Cutting
,”
Proceedings of the International Production Engineering Research Conference
,
ASME
, pp.
42
49
.
44.
Stuwe
,
H. P.
, 1980, “
The Work Necessary to Form a Ductile Fracture Surface
,”
Eng. Fract. Mech.
0013-7944,
13
(
2
), pp.
231
236
.
You do not currently have access to this content.