We consider a linearly elastic composite medium, which consists of a homogeneous matrix containing coated spherical inclusions. The composite is modeled by a four phase pattern consisting of inclusion, interphase, matrix layer, and equivalent homogeneous medium. The overall elastic moduli are obtained using a micromechanical approach based on the Green function techniques and the interfacial operators. The four phase model assumes that all constituents are elastic and perfectly bonded. The model is used to derive the effective elastic properties of representative volume element using classical averaging schemes assuming the isotropy of constituent. Finally, effect of the thickness and stiffness of interphase on the global behavior of real composite materials are examined. Comparisons with experimental results show a good agreement.

1.
Walpole
,
L. J.
, 1978, “
A Coated Inclusion in an Elastic Medium
,”
Math. Proc. Cambridge Philos. Soc.
0305-0041,
83
, pp.
495
506
.
2.
Cherkaoui
,
M.
,
Sabar
,
H.
, and
Berveiller
,
M.
, 1994, “
Micromechanical Approach of the Coated Inclusion Problem and Applications to Composite Materials
,”
ASME J. Eng. Mater. Technol.
0094-4289,
116
, pp.
274
278
.
3.
Cherkaoui
,
M.
,
Sabar
,
H.
, and
Berveiller
,
M.
, 1995, “
Elastic Composites With Coated Reinforcements: A Micromechanical Approach for Nonhomothetic Topology
,”
Int. J. Eng. Sci.
0020-7225,
33
, pp.
829
843
.
4.
Aboutajeddine
,
A.
, 2001, “
Elaboration de Nouvelles Approches Micromécaniques pour l’Optimisation des Performances Mécaniques des Matériaux Hétérogènes
,” Thèse de doctorat. Université de Sherbrooke (Québec) Canada.
5.
Benveniste
,
Y.
,
Dvorak
,
G. J.
, and
Chen
,
T.
, 1989, “
Stress Field in Composite With Coated Inclusions
,”
Mech. Mater.
0167-6636,
7
, pp.
305
317
.
6.
Hervé
,
E.
, and
Zaoui
,
A.
, 1993, “
N-Layered Inclusion-Based Micromechanical Modeling
,”
Int. J. Eng. Sci.
0020-7225,
31
, pp.
1
10
.
7.
Lipinski
,
P.
,
Barhdadi El
,
H.
, and
Cherkaoui
,
M.
, 2005, “
Micromechanical Modeling of an Arbitrary Ellipsoidal Multi-Coated Inclusion
,”
Philos. Mag.
1478-6435, in press.
8.
Ramesh
,
G.
,
Sotelino
,
E. D.
, and
Chen
,
W. F.
, 1996, “
Effect of Transition Zone on Elastic Moduli of Concrete Materials
,”
Cem. Concr. Res.
0008-8846,
26
, pp.
611
622
.
9.
Hashin
,
Z.
, and
Monteiro
,
P. J. M.
, 2002, “
An Inverse Method to Determine the Elastic Properties of the Interphase Between the Aggregate and the Cement Paste
,”
Cem. Concr. Res.
0008-8846,
32
, pp.
1291
1300
.
10.
Hervé
,
E.
, and
Pellegrini
,
O.
, 1995, “
The Elastic Constants of a Material Containing a Spherical Coated Holes
,”
J. Inflamm
1078-7852,
47
, pp.
223
246
.
11.
Bardella
,
L.
, and
Genna
,
F.
, 2001, “
On the Elastic Behavior of Syntactic Foams
,”
Int. J. Solids Struct.
0020-7683,
38
, pp.
7235
7260
.
12.
Bornert
,
M.
,
Stolz
,
C.
, and
Zaoui
,
A.
, 1996, “
Morphologically Representative Pattern-Based Bounding in Elasticity
,”
J. Mech. Phys. Solids
0022-5096,
44
, pp.
307
331
.
13.
Dederichs
,
P. H.
, and
Zeller
,
R.
, 1973, “
Variational Treatment of the Elastic Constants of Disordered Materials
,”
Z. Phys.
0044-3328,
259
, pp.
103
113
.
14.
Hill
,
R.
, 1983, “
Interfacial Operators in the Mechanics of Composite Media
,”
J. Mech. Phys. Solids
0022-5096,
31
, pp.
347
357
.
15.
Hashin
,
Z.
, 1962, “
The Elastic Moduli of Heterogeneous Materials
,”
ASME J. Appl. Mech.
0021-8936,
29
, pp.
143
150
.
16.
Christensen
,
R. M.
, and
Lo
,
K. H.
, 1979, “
Solutions for Effective Shear Properties in Three Phase Sphere and Cylinder Models
,”
J. Mech. Phys. Solids
0022-5096,
27
, pp.
315
330
.
17.
Eshelby
,
J. D.
, 1957, “
The Determination of the Elastic Field of an Ellipsoidal Inclusion and Related Problems
,”
Proc. R. Soc. London, Ser. A
1364-5021,
241
, pp.
376
396
.
18.
Huang
,
J. S.
, and
Gibson
,
L. J.
, 1993, “
Elastic Moduli of a Composite With Hollow Spheres in a Matrix
,”
J. Mech. Phys. Solids
0022-5096,
41
, pp.
55
75
.
19.
Amdouni
,
N.
,
Sautereau
,
H.
, and
Gerard
,
J. F.
, 1992, “
Epoxy Composites Based on Glass Beads. II. Mechanical Properties
,”
J. Appl. Polym. Sci.
0021-8995,
46
, pp.
1723
1735
.
20.
Shodja
,
H. M.
, and
Roumi
,
F.
, 2005, “
Overall Behavior of Composites With Periodic Multi-Inhomogeneities
,”
Mechanics of Materials
,
37
, pp.
243
253
.
21.
Neubauer
,
C. M.
,
Jennings
,
E. J.
, and
Garboczi
,
E. J.
, 1996, “
A Three-Phase Model of the Elastic and Shrinkage Properties of Mortar
,”
Adv. Cem. Based Mater.
1065-7355,
4
, pp.
6
20
.
22.
Cohen
,
M. D.
,
Goldman
,
A.
, and
Chen
,
W. F.
, 1994, “
The Role of Silica Fume in Mortar: Transition Zone Versus Bulk Paste Modification
,”
Cem. Concr. Res.
0008-8846,
24
, pp.
95
98
.
23.
Wang
,
J. A.
,
Lubliner
,
J.
, and
Monteiro
,
P. J. M.
, 1988, “
Effect of Ice Formation on the Elastic Moduli of Cement Paste and Mortar
,”
Cem. Concr. Res.
0008-8846,
18
, pp.
874
885
.
You do not currently have access to this content.