In this study, the load-depth (Ph) relationships matching the experimental results of the nanoindentation tests exhibited at the subregions of small and large depths are obtained, respectively. The relationships associated with these two subregions are then linked by the hyperbolic logarithm function to attain a single expression that is applied in the evaluation of the specimen’s elastic recovery ability, as shown in the unloading process. A new method is developed in the present study to evaluate both Young’s modulus and the yield strength of either a ductile or brittle material through the uses of the appropriate Ph relationships developed in the load and unloading processes. The results of the Young’s modulus and the yield strength achieved by the present method are compared to those obtained from the conventional material tests for a lump material. The scattering of the experimental data shown in the loading and unloading processes are also interpreted by different causes.

1.
Johnson
,
K. L.
, 1985,
Contact Mechanics
,
Cambridge University Press
, Cambridge, England.
2.
Oliver
,
W. C.
, and
Pharr
,
G. M.
, 1992, “
An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments
,”
J. Mater. Res.
0884-2914,
7
(
4
), pp.
1564
1583
.
3.
Sakai
,
M.
, 1993, “
Energy Principle of the IndentationInduced Inelastic Surface Deformation and Hardness of Brittle Materials
,”
Acta Metall. Mater.
0956-7151,
41
(
6
), pp.
1751
1758
.
4.
Suresh
,
S.
, and
Giannakopoulos
,
A. E.
, 1999, “
Determination of Elastoplastic Properties by Sharp Indentation
,”
Scr. Mater.
1359-6462,
40
(
10
), pp.
1191
1198
.
5.
Nayebi
,
A.
,
El Abdi
,
R.
,
Bartier
,
O.
, and
Mauvoisin
,
G.
, 2002, “
New Procedure to Determine Steel Mechanical Parameters From the Spherical Indentation Technique
,”
Mech. Mater.
0167-6636,
34
, pp.
243
254
.
6.
Jayaraman
,
S.
,
Hahn
,
G. T.
,
Oliver
,
W. C.
,
Rubin
,
C. A.
, and
Bastias
,
P. C.
, 1998, “
Determination of Monotonic Stress-Strain Curve of Hard Materials From Ultra-Low-Load Indentation Tests
,”
Int. J. Solids Struct.
0020-7683,
35
(
5
), pp.
365
381
.
7.
Taljat
,
B.
,
Zacharia
,
T.
, and
Kosel
,
F.
, 1998, “
New Analytical Procedure to Determine StressStrain Curve from Spherical Indentation Data
,”
Int. J. Solids Struct.
0020-7683,
35
(
33
), pp.
4411
4426
.
8.
Lu
,
C. J.
, and
Bogy
,
D. B.
, 1995, “
The Effect of Tip Radius on NanoIndentation Hardness Test
,”
Int. J. Solids Struct.
0020-7683,
32
(
12
), pp.
1759
1770
.
9.
Swadener
,
J. G.
,
George
,
E. P.
, and
Pharr
,
G. M.
, 2002, “
The Correlation of the Indentation Size Effect Measured With Indenters of Various Shapes
,”
J. Mech. Phys. Solids
0022-5096,
50
, pp.
681
694
.
10.
Shu
,
J. Y.
, and
Fleck
,
N. A.
, 1998, “
The Prediction of a Size Effect in Micro Indentation
,”
Int. J. Solids Struct.
0020-7683,
35
(
13
), pp.
1363
1383
.
11.
Cheng
,
Y. T.
, and
Zheng
,
Z. M.
, 1998, “
Further Analysis of Indentation Loading Curves: Effects of Tip Rounding on Mechanical Property Measurements
,”
J. Mater. Res.
0884-2914,
13
(
4
), pp.
1059
1064
.
12.
Malzbender
,
J.
,
de With
,
G.
, and
den Toonder
,
J.
, 2000, “
The P‐h2 Relationship in Indentation
,”
J. Mater. Res.
0884-2914,
15
(
5
), pp.
1209
1212
.
13.
Lou
,
J.
,
Shrotriya
,
P.
,
Buchheit
,
T.
,
Yang
,
D.
, and
Soboyejo
,
W. O.
, 2002, “
Nanoindentation Study of Plasticity Length Scale Effects in LIGA Ni Micro-Electromechanical Systems Structures
,”
J. Mater. Res.
0884-2914,
18
(
3
), pp.
719
728
.
14.
Li
,
Z. Y.
,
Cheng
,
Y. T.
,
Yang
,
H. T.
, and
Chandrasekar
,
S.
, 2002, “
On Two Indentation Hardness Definitions
,”
Surf. Coat. Technol.
0257-8972,
154
, pp.
124
130
.
15.
Fischer-Cripps
,
A. C.
, 2000, “
A Review of Analysis Methods for Submicron Indentation Test
,”
Vacuum
0042-207X,
58
, pp.
569
585
.
16.
Morris
,
D. J.
,
Myers
,
S. B.
, and
Cook
,
R. F.
, 2004, “
Sharp Probes of Varying Acuity: Instrumented Indentation and Fracture Behavior
,”
J. Mater. Res.
0884-2914,
19
(
1
), pp.
165
175
.
17.
Wu
,
X. Q.
, and
Xu
,
Y. B.
, 1999, “
Lattice-Distortion-Induced Amorphization in Indented [110] Silicon
,”
J. Mater. Res.
0884-2914,
14
(
3
), pp.
682
687
.
18.
Wu
,
Y. Q.
,
Yang
,
X. Y.
, and
Xu
,
Y. B.
, 1999, “
Cross-Sectional Electron Microscopy Observation on the Amorphized Indentation Region in [001] Single-Crystal Silicon
,”
Acta Mater.
1359-6454,
47
(
8
), pp.
2431
2436
.
19.
Nix
,
W. D.
, and
Gao
,
H.
, 1998, “
Indentation Size Effects in Crystalline Materials: A Law for Strain Gradient Plasticity
,”
J. Mech. Phys. Solids
0022-5096,
46
(
3
), pp.
411
425
.
20.
Hibbeler
,
R. C.
, 1994,
Mechanics of Materials
,
3rd ed.
,
Prentice-Hall
, Englewood Cliffs, NJ.
You do not currently have access to this content.