The behavior of homogeneous and nonhomogenous materials with linearly varying material property subjected to line loading is investigated using the optical method of coherent gradient sensing. A three-dimensional finite element solution to the problem is first undertaken to establish the scope of the region within which the optical data can be considered to be valid. The numerical results are also used to uncover information beyond that which can be obtained from the experimental method, therefore fostering better understanding of the material behavior. The results suggest structural superiority of materials loaded on the stiff side of the material gradient due to the fact that this loading configuration attenuates stress concentration effects.

1.
Messler
,
R. W.
Jr.
,
Jou
,
M.
, and
Orling
,
T. T.
, 1990, “
A Model for Designing Functionally Gradient Material Joints
,”
Weld. J.
,
74
, pp.
160
167
.
2.
Koizumi
,
M.
, and
Niino
,
M.
, 1995, “
Overview of FGM Research in Japan
,”
MRS Bull.
0883-7694,
20
, pp.
19
21
.
3.
Dao
,
M.
,
Gu
,
P.
,
Maewal
,
A.
, and
Asaro
,
R. J.
, 1997, “
A Micromechanical Study of Residual Stresses in Fgms
,”
Acta Mater.
1359-6454,
45
, pp.
3265
3276
.
4.
Gibson
,
R. E.
, 1967, “
Some Results Concerning Displacements and Stresses in a Nonhomogeneous Elastic Half-Space
,”
Geotechnique
0016-8505,
17
, pp.
58
67
.
5.
Kassir
,
M. K.
, 1972, “
Boussinesq Problems for Nonhomogeneous Solid
,”
J. Engrg. Mech. Div.
0044-7951,
98
, pp.
457
470
.
6.
Stark
,
R. F.
, and
Booker
,
J. R.
, 1997, “
Surface Displacements of a Nonhomogeneous Elastic Half-Space Subjected to Uniform Surface Traction. Part I-Loading on Arbitrarily Shaped Areas
,”
Int. J. Numer. Analyt. Meth. Geomech.
0363-9061,
21
, pp.
361
378
.
7.
Carrier
III,
W. D.
, and
Christian
,
J. T.
, 1973, “
Rigid Circular Plate Resting on a Nonhomogeneous Elastic Half-Space
,”
Geotechnique
0016-8505,
23
, pp.
67
84
.
8.
Giannakopoulos
,
A. E.
, and
Suresh
,
S.
, 1997, “
Indentation of Solids with Gradients in Elastic Properties: Part I. Point Force
,”
Int. J. Solids Struct.
0020-7683,
34
, pp.
2357
2392
.
9.
Gibson
,
R. E.
, and
Sills
,
G. C.
, 1969, “
On the Loaded Elastic Half-Space with a Depth Varying Poisson’s Ratio
,”
Z. Angew. Math. Phys.
0044-2275,
20
, pp.
691
695
.
10.
Kassir
,
M. K.
, and
Chuaprasert
,
M. F.
, 1974, “
A Rigid Punch in Contact with a Nonhomogeneous Elastic Solid
,”
J. Appl. Mech.
0021-8936,
41
, pp.
1919
1024
.
11.
Rajapakse
,
R. K. N. D.
, 1990, “
Rigid Inclusion in Nonhomogeneous Incompressible Elastic Half-Space
,”
J. Eng. Mech.
0733-9399,
116
, pp.
399
410
.
12.
Marur
,
P. R.
, and
Tippur
,
H. V.
, 2000, “
Dynamic Response of Bimaterial and Graded Interface Cracks Under Impact Loading
,”
Int. J. Fract.
0376-9429,
103
, pp.
95
109
.
13.
Rousseau
,
C.-E.
, and
Tippur
,
H. V.
, 2000, “
Compositionally Graded Materials with Cracks Normal to the Elastic Gradient
,”
Acta Mater.
1359-6454,
48
, pp.
4021
4033
.
14.
Parameswaran
,
V.
, and
Shukla
,
A.
, 1999, “
Crack-Tip Stress Fields for Dynamic Fracture in Functionally Gradient Materials
,”
Mech. Mater.
0167-6636,
31
, pp.
579
596
.
15.
Spanoudakis
,
J.
, and
Young
,
R. J.
, 1984, “
Crack Propagation in a Glass Particle-Filled Epoxy Resin
,”
J. Mater. Sci.
0022-2461,
19
, pp.
473
486
.
16.
Whitney
,
J. M.
,
Daniel
,
I. M.
, and
Pipes
,
R. B.
, 1993, “
Experimental Mechanics of Fiber Reinforced Composite Materials
,”
SEM Monograph No. 4
,
Prentice–Hall
,
Englewood Cliffs, New Jersay
.
17.
Tippur
,
H. V.
,
Krishnaswamy
,
S.
, and
Rosakis
,
A. J.
, 1992, “
A Coherent Gradient Sensor for Crack Tip Deformation Measurements: Analysis and Experimental Results
,”
Int. J. Fract.
0376-9429,
48
, pp.
193
204
.
You do not currently have access to this content.