Transverse strain in bundles governs transverse cracking in noncrimp fabric (NCF) composites. Finite element (FE) analysis shows that this strain may be significantly lower than the applied macroscopic strain component in the same direction. This feature is important for damage evolution modeling. The isostrain assumption which in different combinations is widely used in stiffness models is inadequate because the strain in different mesoelements (bundles of different orientation and matrix regions) is assumed the same. Analyzing by FEM the importance of media surrounding the bundle on average transverse strain it was found that an increasing ratio of the bundle transverse stiffness to the matrix stiffness leads to a decrease of the strain in the bundle. An increase of the stiffness in the same direction in adjacent layers leads to an increase of the transverse strain in the bundle. Higher bundle volume fraction in the layer leads to larger transverse strain in the bundle. These trends are described by a power law and used to predict the average strain in bundles. The calculated H matrix which establishes the relationship between strains in the mesoelement and representative volume element strains is used to calculate the “effective stiffness” of the bundle. This effective stiffness is the main element in simple but exact expressions derived to calculate the stiffness matrix of NCF composites. Considering the three-dimensional (3D) FE model as the reference, it was found that all homogenization methods used in this study have sufficient accuracy for stiffness calculations, but only the presented method gives reliable predictions of strains in bundles.

1.
Leong
,
K. H.
,
Ramakrishna
,
S.
,
Huang
,
Z. M.
, and
Bibo
,
G. A.
, 2000, “
The Potential of Knitting for Engineering Composites- A Review
,”
Composites, Part A
1359-835X,
31
, pp.
197
220
.
2.
Dransfield
,
K.
,
Baillie
,
C.
, and
Yiu-Wing
,
M.
, 1994, “
Improving the Delamination Resistance of CFRP by Stitching—A Review
,”
Compos. Sci. Technol.
0266-3538,
50
, pp.
305
317
.
3.
Dransfield
,
K.
,
Jain
,
L.
, and
Mai
,
Y-W.
, 1998, “
On the Effects of Stitching in CFRPs- I. Mode I Delamination Toughness
,”
Compos. Sci. Technol.
0266-3538,
58
, pp.
815
827
.
4.
Jain
,
L.
,
Dransfield
,
K.
, and
Mai
,
Y-W.
, 1998, “
On the Effects of Stitching in CFRPs- II. Mode II Delamination Toughness
,”
Compos. Sci. Technol.
0266-3538,
58
, pp.
815
827
.
5.
Miller
,
A. J.
, 1996, “
The Effect of Microstructural Parameters on the Mechanical Properties of Noncrimp Fabric Composites
,” M. Philos. thesis, Cranfield University, School of Industrial and Manufacturing Science, Cranfield, UK.
6.
Ishikawa
,
T.
, and
Chou
,
T. W.
, 1982, “
Elastic Behaviour of Woven Hybrid Composites
,”
J. Compos. Mater.
0021-9983,
16
, pp.
2
19
.
7.
Ishikawa
,
T.
, and
Chou
,
T. W.
, 1983, “
One-Dimensional Micromechanical Analysis of Woven Fabric Composites
,”
AIAA J.
0001-1452,
21
, pp.
1714
1721
.
8.
Kurath
,
P.
, and
Karayaka
,
M.
, 1994, “
Deformation and Failure Behaviour of Woven Composite Laminates
,”
J. Eng. Mater. Technol.
0094-4289,
116
, pp.
222
232
.
9.
Jiang
,
Y.
,
Tabiei
,
A.
, and
Simitses
,
G. J.
, 2000, “
A Novel Micromechanics-Based Approach to the Derivation of Constitutive Equations for Local/Global Analysis of a Plain-Weave Fabric Composite
,”
Compos. Sci. Technol.
0266-3538,
60
, pp.
1825
1833
.
10.
Wu
,
Z. J.
,
Brown
,
D.
, and
Davies
,
J. M.
, 2002, “
An Analytical Modelling Technique for Predicting the Stiffness of 3-D Orthotropic Laminated Fabric Composites
,”
Compos. Struct.
0263-8223,
56
, pp.
407
412
.
11.
Wang
,
Y.
,
Li
,
J.
, and
Do
,
P. B.
, 1995, “
Properties of Composites Laminates Reinforced with E-Glass Multiaxial Noncrimp Fabrics
,”
J. Compos. Mater.
0021-9983,
29
, pp.
2317
2333
.
12.
Bibo
,
G. A.
,
Hogg
,
P. J.
, and
Kemp
,
M.
, 1997, “
Mechanical Characterisation of Glass- and Carbon-Fibre-Reinforced Composites Made with Noncrimp Fabrics
,”
Compos. Sci. Technol.
0266-3538,
57
, pp.
1221
1241
.
13.
Chun
,
H.-J.
,
Ryu
,
K. S.
, and
Byun
,
J. H.
, 2004, “
Predictions of Elastic Properties of Multi-Axial Warp Knitted Fabric Composites
,”
Key Eng. Mater.
1013-9826,
261–263
, pp.
1499
1504
.
14.
Robitaille
,
F.
,
Clayton
,
B. R.
,
Long
,
A. C.
,
Souter
,
B. J.
, and
Rudd
,
C. D.
, 2000, “
Geometric Modelling of Industrial Preforms: Warp-Knitted Textiles
,”
Proc. Inst. Mech. Engrs. Part L. J. Mater.-Des. Appl.
,
214
, pp.
71
90
.
15.
Klopp
,
K.
,
Veihelmann
,
B.
,
Kolkmann
,
A.
,
Laourine
,
E.
, and
Gries
,
T.
, 2003, “
Use of Reinforcement Textiles in Fiber Reinforced Plastics
,”
Tech. Text.
,
46
, pp.
59
63
.
16.
Edgren
,
F.
, and
Asp
,
L.
, 2005, “
Approximate Analytical Constitutive Model for Non-crimp Fabric Composites
,”
Composites, Part A
1359-835X,
36
, pp.
173
181
.
17.
Edgren
,
F.
,
Mattsson
,
D.
,
Asp
,
L. E.
, and
Varna
,
J.
, 2004, “
Formation of Damage and Its Effects on Noncrimp Fabric Reinforced Composites Loaded in Tension
,”
Compos. Sci. Technol.
0266-3538,
64
, pp.
675
692
.
18.
Hashin
,
Z.
, and
Rosen
,
B. W.
, 1964, “
The Elastic Moduli of Fiber-Reinforced Materials
,”
J. Appl. Mech.
0021-8936,
31
, pp.
223
232
.
19.
Hashin
,
Z.
, 1983, “
Analysis of Composite Materials – A survey
,”
J. Appl. Mech.
0021-8936,
50
, pp.
481
505
.
20.
Allen
,
D. H.
, and
Yoon
,
C.
, 1998, “
Homogenization Techniques for Thermo-Viscoelastic Solids Containing Cracks
,”
Int. J. Solids Struct.
0020-7683,
35
, pp.
4034
4053
.
21.
Naik
,
N. K.
, and
Shembekar
,
P. S.
, 1992, “
Elastic Behaviour of Woven Fabric Composites: I- Lamina Analysis
,”
J. Compos. Mater.
0021-9983,
26
, pp.
2196
2225
.
22.
Shembekar
,
P. S.
, and
Naik
,
N. K.
, 1992, “
Elastic Behaviour of Woven Fabric Composites: II- Laminate Analysis
,”
J. Compos. Mater.
0021-9983,
26
, pp.
2126
2246
.
You do not currently have access to this content.