In the present study, monolithic magnesium, nanosized SiC reinforced magnesium and nanosized hybrid (SiC+Al2O3) reinforced magnesium materials have been synthesized by using powder metallurgy route involving microwave sintering followed by hot extrusion. The results show that the monolithic and the reinforced magnesium materials have minimal porosity and the reinforced magnesium materials have fairly well distributed nanosized SiC and SiC+Al2O3 particles in the matrix. The thermo-mechanical property measured in terms of coefficient of thermal expansion of the reinforced magnesium shows dimensionally more stable magnesium as compared to monolithic magnesium. The hardness 0.2% YS and UTS were found to improve significantly after addition of nanosized SiC and nanosized hybrid SiC+Al2O3 particles to the magnesium, However, ductility measured in terms of failure strain was found to be marginally reduced. Fractography results showed the presence of brittle failure mode with cleavage steps on the fractured surface of the magnesium matrix.

1.
Rohatgi
,
P. K.
,
Asthana
,
R.
, and
Das
,
S.
, 1986, “
Solidification, Structures, and Properties of Cast Metal-Ceramic Particle Composities
,”
Int. Met. Rev.
0308-4590,
31
, pp.
115
139
.
2.
Lloyd
,
D. J.
, 1994, “
Particle Reinforced Aluminum and Magnesium Matrix Composites
,”
Int. Mater. Rev.
0950-6608,
39
, pp.
1
23
.
3.
Luo
,
A.
, 1995, “
Processing, Microstructure and Mechanical Behaviour of Cast Magnesium Metal Matrix Composites
,”
Metall. Trans. A
0360-2133,
26A
, pp.
2445
2455
.
4.
Hort
,
N.
,
Dieringa
,
H.
,
Thakur
,
S. K.
, and
Kainer
,
K. U.
, 2006, “
Magnesium Matrix Composites
,”
Magnesium Technology: Metallurgy, Design Data, Applications
,
H. E.
Friedrich
and
B. L.
Mordike
, eds.,
Springer-Verlag
,
Berlin
, pp.
315
334
.
5.
Schroder
,
J.
, and
Kainer
,
K. U.
, 1991, “
Magnesium-Base Hybrid Composites Prepared by Liquid Infiltration
,”
Mater. Sci. Eng., A
0921-5093,
135
, pp.
33
36
.
6.
Everette
,
R. K.
, and
Arsenault
,
R. J.
, eds., 1991,
Metal Matrix Composites: Processing and Interfaces
,
Academic
,
New York
, p.
228
.
7.
Goh
,
C. S.
,
Wei
,
J.
,
Lee
,
L. C.
, and
Gupta
,
M.
, 2006, “
Development of Novel Carbon Nanotube Reinforced Magnesium Nanocomposites Using the Powder Metallurgy Technique
,”
Nanotechnology
0957-4484,
17
, pp.
7
12
.
8.
Lan
,
J.
,
Yang
,
Y.
, and
Li
,
X.
, 2004, “
Microstructure and Microhardness of SiC Nanoparticles Reinforced Magnesium Composites Fabricated by Ultrasonic Method
,”
Mater. Sci. Eng., A
0921-5093,
386
, pp.
284
290
.
9.
Ferkel
,
H.
, and
Mordike
,
B. L.
, 2001, “
Magnesium Strengthened by SiC Nanoparticles
,”
Mater. Sci. Eng., A
0921-5093,
298
, pp.
193
199
.
10.
Trojanova
,
Z.
,
Lukac
,
P.
,
Ferkel
,
H.
,
Mordike
,
B. L.
, and
Riehemann
,
W.
, 1997, “
Stability of Microstructure in Magnesium Reinforced by Nanoscaled Alumina Particles
,”
Mater. Sci. Eng., A
0921-5093,
234–236
, pp.
798
801
.
11.
Hassan
,
S. F.
, and
Gupta
,
M.
, 2004, “
Development of High Performance Magnesium Nanocomposites Using Solidification Processing Route
,”
Mater. Sci. Technol.
0267-0836,
20
, pp.
1383
1388
.
12.
Thakur
,
S. K.
,
Dhindaw
,
B. K.
,
Hort
,
N.
, and
Kainer
,
K. U.
, 2004, “
Some Studies on Thermal Expansion Behavior of C-Fiber, SiCp and Mg2Si In-Situ Reinforced AZ31 Mg-Alloy Based Hybrid Composites
,”
Metall. Mater. Trans. A
1073-5623,
35A
, pp.
1167
1176
.
13.
Kumar
,
S. R.
,
Panigrahi
,
M. K.
,
Thakur
,
S. K.
,
Kainer
,
K. U.
,
Chakraborty
,
M.
, and
Dhindaw
,
B. K.
, 2006, “
Characterization of Stress in Reinforcements in Magnesium Based Squeeze Infiltrated Cast Hybrid Composites
,”
Mater. Sci. Eng., A
0921-5093,
415
, pp.
207
212
.
14.
Gu
,
J.
,
Zhang
,
X.
, and
Gu
,
M.
, 2004, “
Mechanical Properties and Damping Capacity of (SiCp+Al2O3∙SiO2f)∕Mg Hybrid Metal Matrix Composite
,”
J. Alloys Compd.
0925-8388,
385
, pp.
104
108
.
15.
Gu
,
M.
,
Wu
,
Z.
,
Jin
,
Y.
, and
Kocak
,
M.
, 1999, “
Effects of Reinforcements on the Aging Response of a ZK60-based Hybrid Composite
,”
Mater. Sci. Eng., A
0921-5093,
272
, pp.
257
263
.
16.
Thakur
,
S. K.
,
Dieringa
,
H.
,
Dhindaw
,
B. K.
,
Hort
,
N.
, and
Kainer
,
K. U.
, 2005, “
Thermal Cycling and Creep Studies of AM50+Nd Magnesium Alloy Based Carbon Fiber, SiC particulate and In-Situ Mg2Si Reinforced Hybrid Composites
,”
Transactions of the Indian Institute of Metals
,
58
, pp.
653
659
.
17.
IFAM Dresden Invests in Microwave Sintering for Metals
,” 2003,
Powder Metall.
0032-5899,
46
, pp.
191
191
.
18.
Anklekar
,
R. M.
,
Bauer
,
K.
,
Agrawal
,
D. K.
, and
Roy
,
R.
, 2005, “
Improved Mechanical Properties and Microstructural Development of Microwave Sintered Copper and Nickel Steel PM Parts
,”
Powder Metall.
0032-5899,
48
, pp.
39
46
.
19.
Breval
,
E.
,
Cheng
,
J. P.
,
Agrawal
,
D. K.
,
Gigl
,
P.
,
Dennis
,
A.
,
Roy
,
R.
, and
Papworth
,
A. J.
, 2005, “
Comparison Between Microwave and Conventional Sintering of WC∕Co Composites
,”
Mater. Sci. Eng., A
0921-5093,
391
, pp.
285
295
.
20.
Roy
,
R.
,
Cheng
,
J.
, and
Agrawal
,
D.
, 2002, US Patent No. 6,365,885 B1.
21.
Wong
,
W. L. E.
,
Karthik
,
S.
, and
Gupta
,
M.
, 2005, “
Development of High Performance Mg-Al2O3 Composites Containing Al2O3 in Submicron Length Scale using Microwave Assisted Rapid Sintering
,”
Mater. Sci. Technol.
0267-0836,
21
, pp.
1063
1070
.
22.
Gupta
,
M.
, and
Wong
,
W. L. E.
, 2005, “
Enhancing Overall Mechanical Performance of Metallic Materials using Two-directional Microwave Assisted Rapid Sintering
,”
Scr. Mater.
1359-6462,
52
, pp.
479
483
.
23.
Gupta
,
M.
,
Srivatsan
,
T. S.
,
Mohamed
,
F. A.
, and
Lavernia
,
E. J.
, 1993, “
Microstructural Evolution and Mechanical Properties of SiC∕Al2O3 Particulate Reinforced Spray Deposited Metal Matrix Composites
,”
J. Mater. Sci.
0022-2461,
28
, pp.
2245
2259
.
24.
Reed-Hill
,
R. E.
, 1964,
Physical Metallurgy Principles
,
D. Van Nostrand Company
,
New York
, pp.
192
194
,
267
,
753
.
25.
Shewmon
,
P. G.
, 1969,
Transformation in Metals
,
McGraw-Hill
,
New York
, pp.
69
.
26.
Cullity
,
B. D.
, 1978,
Elements of X-Ray Diffraction
,
Addison-Wesley
,
Reading, Massachusetts
, pp.
414
.
27.
Kubaschewski
,
O.
, and
Alcock
,
C. B.
, 1979,
Metallurgucal Thermichemistry
,
Pergamon
,
Oxford, UK.
28.
Barin
,
I.
, 1989,
Thermochemical Data of Pure Substances
,
VCH-Verlagsgesellschaft
,
Weinheim, Germany
.
29.
Vaidya
,
R. U.
, and
Chawla
,
K. K.
, 1994, “
Thermal Expansion of Metal-Matrix Composites
,”
Compos. Sci. Technol.
0266-3538,
50
, pp.
13
22
.
30.
ASM Handbook, Engineering Materials
,
6th ed.
, Budinski, Specification sheet, ASM, Metals Park, Ohio.
31.
Brandes
,
E. A.
, and
Brook
,
G. B.
, eds., 1998,
Smithells Metals Reference Book
,
Butterworth-Heinemann
,
London
, pp.
5
12
.
32.
Wai
,
L. K.
, 2003, “
Development of new aluminum based hybrid composites
,” B. Eng. thesis, National University of Singapore, Singapore, 2003, pp.
1
52
.
33.
Arsenault
,
R. J.
, and
Shi
,
N.
, 1986, “
Dislocation Generation Due to Differences Between the Coefficients of Thermal Expansion
,”
Mater. Sci. Eng.
0025-5416,
81
, pp.
175
187
.
34.
Murr
,
L. E.
, 1975,
Interfacial Phenomena in Metals and Alloys
,
Addison-Wesley
,
Reading, Massachusetts
, pp.
202
208
,
340
344
.
35.
Geiger
,
A. L.
, and
Walker
,
J. A.
, 1991, “
The Processing and Properties of Discontinuously Reinforced Aluminum Composites
,” JOM, August, pp.
8
15
.
36.
Ibrahim
,
I. A.
,
Mohamed
,
F. A.
, and
Lavernia
,
E. J.
, 1991, “
Particulate Reinforced Metal Matrix Composites: A Review
,”
J. Mater. Sci.
0022-2461,
26
, pp.
1137
1156
.
You do not currently have access to this content.