Fatigue process is described as the nucleation and growth of cracks to final failure. These two stages are generally modeled with completely different methods with no quantitative relationships between them. A number of fitting parameters are needed to consider different effects. The current work is aimed at developing a robust approach to predicting fatigue life from crack initiation to final fracture. Fatigue damage is related to the stresses and strains. Both crack nucleation and crack growth are governed by the same fatigue damage mechanisms and a single fatigue damage criterion can model both stages. A basic rule is that any material point fails to form a fresh crack if the total accumulated fatigue damage reaches a limit. The approach consists of two steps. Elastic-plastic stress analysis is conducted to obtain the detailed stress-strain responses. A general fatigue criterion is used to predict both fatigue crack nucleation and growth. Notched specimens made of 1070 steel were experimentally tested from crack initiation until fracture. The approach was applied to predict the fatigue life of 1070 steel and the predicted fatigue lives were in excellent agreement with the experimental observations.

1.
Socie
,
D. F.
, 1993, “
Critical Plane Approaches for Multiaxial Fatigue Damage Assessment
,”
Advances in Multiaxial Fatigue
, ASTM STP 1191,
D. L.
McDowell
and
R.
Ellis
, eds.,
American Society for Testing and Materials
, Philadelphia, pp.
7
36
.
2.
Socie
,
D. F.
,
Waill
,
L. A.
, and
Dittmer
,
D. F.
, 1985, “
Biaxial Fatigue of Inconel 718 Including Mean Stress Effects
,”
Multiaxial Fatigue
, ASTM STP 853,
K. J.
Miller
, and
M. W.
Brown
, eds.,
American Society for Testing and Materials
, Philadelphia, pp.
463
481
.
3.
Socie
,
D. F.
, and
Bannantine
,
J.
, 1987, “
Bulk Deformation Damage Models
,”
Mater. Sci. Eng., A
0921-5093,
103
, pp.
3
13
.
4.
Kurath
,
P.
, and
Fatemi
,
A.
, 1990, “
Cracking Mechanisms for Mean Stress∕Strain Low-Cycle Multiaxial Fatigue Loadings
,”
Quantitative Methods in Fractography
, ASTM STP 1085,
B. M.
Strauss
, and
S. K.
Putatunda
, eds.,
American Society for Testing and Materials
, Philadelphia, pp.
123
143
.
5.
Socie
,
D. F.
,
Kurath
,
P.
, and
Koch
,
J.
, 1989, “
A Multiaxial Fatigue Damage Parameter
,”
Biaxial and Multiaxial Fatigue
—EGF3,
M. W.
Brown
K. J.
Miller
. eds.,
Mechanical Engineering Publications
, London, pp.
535
550
.
6.
Brown
,
M. W.
, and
Miller
,
K. J.
, 1973, “
A Theory for Fatigue Failure Under Multiaxial Stress-Strain Conditions
,”
Proc. Inst. Mech. Eng.
0020-3483,
187
, pp.
745
755
.
7.
Kandil
,
F. A.
,
Brown
,
M. W.
, and
Miller
,
K. J.
, 1982, “
Biaxial Low-Cycle Fatigue Fracture of 316 Stainless Steel at Elevated Temperatures
,”
Book 280
,
The Metals Society
,
London
, pp.
203
210
.
8.
Fatemi
,
A.
, and
Socie
,
D. F
, 1988, “
A Critical Plane Approach to Multiaxial Fatigue Damage Including Out of Phase Loading
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
11
, pp.
149
165
.
9.
Fatemi
,
A.
, and
Kurath
,
P.
, 1988, “
Multiaxial Fatigue Life Predictions under the Influence of Mean Stresses
,”
ASME J. Eng. Mater. Technol.
0094-4289,
110
, pp.
380
388
.
10.
Smith
,
K. N.
,
Watson
,
P.
, and
Topper
,
T. H.
, 1970, “
A Stress Strain Function for the Fatigue of Metals
,”
J. Mater.
0022-2453,
5
, pp.
767
778
.
11.
Socie
,
D. F.
, 1987, “
Multiaxial Fatigue Damage Models
,”
ASME J. Eng. Mater. Technol.
0094-4289,
109
, pp.
293
298
.
12.
Jiang
,
Y.
, 2000, “
A Fatigue Criterion for General Multiaxial Loading
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
23
, pp.
19
32
.
13.
Paris
,
P.
,
Gomez
,
M. P.
, and
Anderson
,
W. E.
, 1961, “
A Rational Analytical Theory of Fatigue
,”
The Trend in Engineering
,
University of Washington
, Seattle, Vol.
13
, pp.
9
14
.
14.
Paris
,
P. C.
, and
Erdogan
,
F.
, 1963, “
A Critical Analysis of Crack Propagation Laws
,”
ASME J. Basic Eng.
0021-9223,
D85
, pp.
528
534
.
15.
Sadananda
,
K.
, and
Vasudevan
,
A. K.
, 1997, “
Short Crack Growth Behavior
,” in
Fatigue and Fracture Mechanics
, ASTM STP 1296,
R. S.
Piascik
et al.
, eds.,
American Society for Testing and Materials
, Philadelphia, Vol.
27
, pp.
301
316
.
16.
Hammouda
,
M. M.
,
Smith
,
R. A.
, and
Miller
,
K. J.
, 1979, “
Elastic-Plastic Fracture Mechanics for Initiation and Propagation of Notch Fatigue Cracks
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
2
, pp.
139
154
.
17.
Smith
,
R. A.
, and
Miller
,
K. J.
, 1978, “
Prediction of Fatigue Regimes in Notched Components
,”
Int. J. Mech. Sci.
0020-7403,
20
, pp.
201
206
.
18.
Hammouda
,
M. M.
, and
Miller
,
K. J.
, 1979, “
Elastic-Plastic Fracture Mechanics Analyses of Notches
,”
Elastic-Plastic Fracture
, ASTM STP, 668,
J. D.
Landes
,
J. A.
Begley
, and
G. A.
Clarke
, eds.,
American Society for Testing and Materials
, Philadelphia pp.
703
719
.
19.
Haddad
,
M. H. El
,
Smith
,
K. N.
, and
Topper
,
T. H.
, 1979, “
Fatigue Crack Propagation of Short Cracks
,”
ASME J. Eng. Mater. Technol.
0094-4289,
101
, pp.
42
46
.
20.
Dugdale
,
D. S.
, 1960, “
Yielding of Steel Sheets Containing Slits
,”
J. Mech. Phys. Solids
0022-5096,
8
, pp.
100
104
.
21.
Newman
,
J. C.
, Jr.
, 1981, “
A Crack-Closure Model for Predicting Fatigue Crack Growth Under Aircraft Spectrum Loading
,”
Methods and Models for Predicting Fatigue Crack Growth Under Random Loading
, ASTM STP 748,
J. B.
Chang
, and
C. M.
Hudson
, Eds.,
American Society for Testing and Materials
, Philadelphia, pp.
53
84
.
22.
Elber
,
W.
, 1970, “
Fatigue Crack Closure under Cyclic Tension
,”
Eng. Fract. Mech.
0013-7944,
2
, pp.
37
45
.
23.
McClung
,
R. C.
, and
Sehitoglu
,
H.
, 1989, “
On the Finite Element Analysis of Fatigue Crack Closure
,”
Eng. Fract. Mech.
0013-7944,
33
, pp.
237
272
.
24.
McClung
,
R. C.
, and
Sehitoglu
,
H.
, 1991, “
Characterization of Fatigue Crack Growth in Intermediate and Large Scale Yielding
,”
Mater. Sci. Eng., A
0921-5093
113
, pp.
15
22
.
25.
McClung
,
R. C.
, and
Sehitoglu
,
H.
, 1992, “
Closure and Growth of Fatigue Crack at Notches
,”
Mater. Sci. Eng., A
0921-5093
114
, pp.
1
7
.
26.
Sehitoglu
,
H.
,
Gall
,
K.
, and
Garcia
,
A. M.
, 1996, “
Recent Advances in Fatigue Crack Growth Modeling
,”
Int. J. Fract.
0376-9429,
80
, pp.
165
192
.
27.
Fleck
,
N. A.
, and
Newman
,
J. C.
, Jr.
, 1988, “
Analysis of Crack Closure under Plane Strain Conditions
,”
Mechanics of Fatigue Crack Closure
, ASTM STP 982,
J. C.
Newman
, Jr.
, and
W.
Elber
, Eds.,
American Society for Testing and Materials
, Philadelphia, pp.
319
341
.
28.
Roychowdhury
,
S.
, and
Dodds
,
R. H.
, 2003, “
Three-Dimensional Effects on Fatigue Crack Closure in the Small-Scale Yielding Regime—A Finite Element Study
.”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
26
, pp.
663
673
.
29.
Allen
,
R. J.
,
Booth
,
G. S.
, and
Jutla
,
T.
, 1988, “
A Review of Fatigue Crack Growth Charaterisation by Linear Elastic Fracture Mechanics (LEFM). Part I—Principles and Methods of Data Generation
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
11
, pp.
45
69
.
30.
Vasudevan
,
A. K.
,
Sadananda
,
K.
, and
Louat
,
N.
, 1994, “
A Review of Crack Closure, Fatigue Crack Threshold and Related Phenomena
,”
Mater. Sci. Eng., A
0921-5093
188
, pp.
1
22
.
31.
Jiang
,
Y.
,
Feng
,
M.
, and
Ding
,
F.
, 2004, “
A Reexamination of Plasticity-Induced Crack Closure in Crack Propagation
,”
Int. J. Plast.
0749-6419,
21
, pp.
1720
1740
.
32.
Feng
,
M.
,
Ding
,
F.
, and
Jiang
,
Y.
, 2005, “
Modeling of Fatigue Crack Growth from a Notch
,” submitted to Int. J. Plast.
33.
Oliva
,
V.
,
Cseplo
,
L.
,
Materna
,
A.
, and
Blahova
,
L.
, 1997, “
FEM Simulation of Fatigue Crack Growth
,”
Mater. Sci. Eng., A
0921-5093,
234–236
, pp.
517
520
.
34.
Dougherty
,
J. D.
,
Padovan
,
J.
, and
Srivatsan
,
T. S.
, 1997, “
Fatigue Crack Propagation and Closure Behavior of Modified 1070 Steel: Finite Element Study
,”
Eng. Fract. Mech.
0013-7944,
56
, pp.
189
212
.
35.
Zhang
,
J.
,
Zhang
,
J.
, and
Du
,
S.
, 2001, “
Elastic-Plastic Finite Element Analysis and Experimental Study of Short and Long Fatigue Crack Growth
,”
Eng. Fract. Mech.
0013-7944,
68
, pp.
1591
1605
.
36.
Chan
,
K. S.
, and
Miller
,
A. K.
, 1983, “
FATIGMOD: A Unified Phenomenological Model for Predicting Fatigue Crack Initiation and Propagation
,”
Proceedings of the ASME International Conference on Advances in Life Prediction Methods
,
Albany, NY
, April, pp.
1
16
.
37.
Miller
,
A. K.
, and
Chan
,
K. S.
, 1983, “
Predicting of Sequence Effects and Cumulative Damage in Fatigue Using a Unified Model for Crack Initiation and Growth
,”
Proceedings of the ASME Symposium on Temperature and Environmental Effects in Fatigue: Research-Design Interface
,
Portland, OR
, June, pp.
21
44
.
38.
Miller
,
A. K.
, and
Chan
,
K. S.
, 1984, “
Predicting fatigue crack initiation and growth under complex multiaxial loading
Proceedings of the 2nd International Conference on Creep and Fracture of Engineering Materials and Structure
,
Swansea, U. K.
, April, pp.
1055
1078
.
39.
Feng
,
M.
,
Ding
,
F.
, and
Jiang
,
Y.
, 2005, “
A Study of Crack Growth Retardation due to Artificially Induced Crack Surface Contact
,”
Int. J. Fatigue
0142-1123,
27
, pp.
1319
1327
.
40.
Altair
,
HyerMesh
, 2001. Version 5. 0, Altair Engineering, Inc.
41.
Jiang
,
Y.
, and
Sehitoglu
,
H.
, 1996, “
Modeling of Cyclic Ratchetting Plasticity: Part I—Development of Constitutive Equations
,”
ASME J. Appl. Mech.
0021-8936,
63
, pp.
720
725
.
42.
Jiang
,
Y.
, and
Sehitoglu
,
H.
, 1996, “
Modeling of Cyclic Ratchetting Plasticity: Part II—Implement of the New Model and Comparison of Theory with Experiments
,”
ASME J. Appl. Mech.
0021-8936,
63
, pp.
726
733
.
43.
ABAQUS, 2003,
User’s Manual and Theory Manual
, Hibbit, Karlsson and Sorensen, Inc.
44.
Jiang
,
Y.
, and
Feng
,
M.
, 2004, “
Modeling of Fatigue Crack Propagation
,”
ASME J. Eng. Mater. Technol.
0094-4289,
126
, pp.
77
86
.
45.
Jiang
,
Y.
,
Xu
,
B.
, and
Sehitoglu
,
H.
, 2002, “
Three-Dimensional Elastic-Plastic Stress Analysis of Rolling Contact
ASME J. Tribol.
0742-4787,
124
, pp.
699
708
.
46.
Jiang
,
Y.
, and
Sehitoglu
,
H.
, 1992, “
Fatigue and Stress Analyses of Rolling Contact
,” Report No., 161, A Report of the Materials Engineering-Mechanical Behavior, College of Engineering, University of Illinois at Urbana-Champaign, UILU-ENG
92
3602
.
47.
Jiang
,
Y.
, and
Feng
,
M.
, 2004, “
A New Approach to Predicting Fatigue Crack Propagation
,”
Fracture Methodologies and Manufacturing Process
, Vol.
474
, July 25–29, San Diego, CA, PVP2004–2297, pp.
23
31
.
You do not currently have access to this content.