An internal state variable void coalescence equation developed by Horstemeyer, Lathrop, Gokhale, and Dighe (2000, Theor. Appl. Fract. Mech., 33(1), pp. 31–47) that comprises void impingement and void sheet mechanisms is updated based on three-dimensional micromechanical simulations and novel experiments. This macroscale coalescence equation, developed originally from two-dimensional finite element simulations, was formulated to enhance void growth. In this study, three-dimensional micromechanical finite element simulations were employed using cylindrical and spherical void geometries in nickel that were validated by experiments. The number of voids, void orientation, and void spacing were all varied and tested and simulated under uniaxial loading conditions. The micromechanical results showed excellent agreement with experiments in terms of void volume fractions versus strain and local void geometry images. Perhaps more importantly, the macroscale internal state variable void coalescence equation did not require a functional form change but just a coefficient value modification.

1.
Horstemeyer
,
M. F.
,
Lathrop
,
J.
,
Gokhale
,
A. M.
, and
Dighe
,
M.
, 2000, “
Modeling Stress State Dependent Damage Evolution in a Cast Al-Si-Mg Aluminum Alloy
,”
Theor. Appl. Fract. Mech.
0167-8442,
33
(
1
), pp.
31
47
.
2.
Lu
,
W. Y.
,
Horstemeyer
,
M. F.
,
Korellis
,
J. S.
,
Grishibar
,
R. B.
, and
Mosher
,
D.
, 1998, “
High Temperature Sensitivity of Notched AISI 304L Stainless Steel Tests
,”
Theor. Appl. Fract. Mech.
0167-8442,
30
(
2
), pp.
139
152
.
3.
Garrison
,
W. M.
, and
Moody
,
N. R.
, 1987, “
Ductile Fracture
,”
J. Phys. Chem. Solids
0022-3697,
48
(
11
), pp.
1035
1074
.
4.
McClintock
,
F. A.
, 1968, “
A Criterion for Ductile Fracture by the Growth of Holes
,”
ASME J. Appl. Mech.
0021-8936,
35
, pp.
363
371
.
5.
Rice
,
J. R.
, and
Tracey
,
D. M.
, 1969, “
On the Ductile Enlargement of Voids in Triaxial Stress Fields
,”
J. Mech. Phys. Solids
0022-5096,
17
(
3
), pp.
201
217
.
6.
Bridgman
,
P. W.
, 1923, “
The Compressibility of Thirty Metals as a Function of Pressure and Temperature
,”
Proc. Am. Acad. Arts Sci.
0065-6836,
58
(
5
), pp.
164
242
.
7.
Gurson
,
A. L.
, 1977, “
Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part 1 — Yield Criteria and Flow Rule for Porous Ductile Media
,”
ASME J. Eng. Mater. Technol.
0094-4289,
99
, pp.
2
15
.
8.
Gologanu
,
M.
,
Leblond
,
J.-B.
,
Perrin
,
G.
, and
Devaux
,
J.
, 1997, “
Recent Extensions of Gurson’s Model for Porous Ductile Metals
,”
Continuum Micromechanics
,
Suquet
,
P.
, ed.,
Springer
, New York, pp.
61
130
.
9.
Tvergaard
,
V.
, 1982, “
Ductile Fracture by Cavity Nucleation Between Larger Voids
,”
J. Mech. Phys. Solids
0022-5096,
30
(
4
), pp.
265
286
.
10.
Tvergaard
,
V.
, 1982, “
On Localization in Ductile Materials Containing Spherical Voids
,”
Int. J. Fract.
0376-9429,
18
(
4
), pp.
237
252
.
11.
Tvergaard
,
V.
, and
Needleman
,
A.
, 1984, “
Analysis of the Cup-Cone Fracture in a Round Tensile Bar
,”
Acta Metall.
0001-6160,
32
(
1
), pp.
157
169
.
12.
Tvergaard
,
V.
, 1990, “
Material Failure by Void Growth to Coalescence
,”
Adv. Appl. Mech.
0065-2156,
27
, pp.
83
151
.
13.
Cocks
,
A. C. F.
, and
Ashby
,
M. F.
, 1980, “
Intergranular Fracture During Power-Law Creep Under Multiaxial Stresses
,”
J. Metal Sci.
,
14
, pp.
395
402
.
14.
Budiansky
,
B.
,
Hutchinson
,
J. W.
, and
Slutsky
,
S.
, 1982, “
Void Growth and Collapse in Viscous Solids
,”
Mechanics of Solids: The Rodney Hill 60th Anniversary Volume
,
Hopkins
,
H. G.
, and
Sewell
,
M. J.
, eds.,
Pergamon Press
, London, pp.
13
45
.
15.
Thomason
,
P. F.
, 1985, “
Three-Dimensional Models for the Plastic Limit-Loads at Incipient Failure of the Intervoid Matrix in Ductile Porous Solids
,”
Acta Metall.
0001-6160,
33
(
6
), pp.
1079
1085
.
16.
Thomason
,
P. F.
, 1985, “
A Three-Dimensional Model for Ductile Fracture by the Growth and Coalescence of Microvoids
,”
Acta Metall.
0001-6160,
33
(
6
), pp.
1087
1095
.
17.
Pardoen
,
T.
, and
Hutchinson
,
J. W.
, 2000, “
An Extended Model for Void Growth and Coalescence
,”
J. Mech. Phys. Solids
0022-5096,
48
(
12
), pp.
2467
2512
.
18.
Benzerga
,
A. A.
, 2002, “
Micromechanics of Coalescence in Ductile Fracture
,”
J. Mech. Phys. Solids
0022-5096,
50
(
6
), pp.
1331
1362
.
19.
Gologanu
,
M.
,
Leblond
,
J.-B.
,
Perrin
,
G.
, and
Devaux
,
J.
, 2001, “
Theoretical Models for Void Coalescence in Porous Ductile Solids. I. Coalescence in Layers
,”
Int. J. Solids Struct.
0020-7683,
38
(
32-33
), pp.
5581
5594
.
20.
Horstemeyer
,
M. F.
,
Matalanis
,
M. M.
,
Sieber
,
A. M.
, and
Botos
,
M. L.
, 2000, “
Micromechanical Finite Element Calculations of Temperature and Void Configuration Effects on Void Growth and Coalescence
,”
Int. J. Plast.
0749-6419,
16
(
7–8
), pp.
979
1015
.
21.
Horstemeyer
,
M. F.
, and
Ramaswamy
,
S.
, 2000, “
On Factors Affecting Localization and Void Growth in Ductile Metals: A Parametric Study
,”
Int. J. Damage Mech.
1056-7895,
9
(
1
), pp.
5
28
.
22.
Needleman
,
A.
, 1972, “
Void Growth in an Elastic-Plastic Medium
,”
ASME J. Appl. Mech.
0021-8936,
39
, pp.
964
970
.
23.
Koplik
,
J.
, and
Needleman
,
A.
, 1988, “
Void Growth and Coalescence in Porous Plastic Solids
,”
Int. J. Solids Struct.
0020-7683,
24
(
8
), pp.
835
853
.
24.
Kuna
,
M.
, and
Sun
,
D. Z.
, 1996, “
Three-Dimensional Cell Model Analyses of Void Growth in Ductile Materials
,”
Int. J. Fract.
0376-9429,
81
(
3
), pp.
235
258
.
25.
Perra
,
M.
, and
Finnie
,
I.
, 1978, “
Void Growth and Localization of Shear in Plane Strain Tension
,”
Solid Wastes Man. Refuse Removal J.
,
2A
, pp.
415
423
.
26.
Bourcier
,
R. J.
, and
Koss
,
D. A.
, 1981, “
Ductile Fracture Under Multiaxial Stress States Between Pairs of Holes
,”
Adv. Fract. Res.
,
1
, pp.
187
194
.
27.
Mulholland
,
M. M.
,
Ege
,
E. S.
,
Khraishi
,
T. A.
,
Horstemeyer
,
M. F.
, and
Shen
,
Y.-L.
, 2003, “
Cavity Mediated Strain Localization and Overall Ductility in Eutectic Tin-Lead Alloy
,”
Mater. Sci. Eng., A
0921-5093,
360
(
1-2
), pp.
160
168
.
28.
Al-Ostaz
,
A.
, and
Jasiuk
,
I.
, 1997, “
Crack Initiation and Propagation in Materials with Randomly Distributed Holes
,”
Eng. Fract. Mech.
0013-7944,
58
(
5–6
), pp.
395
420
.
29.
Bammann
,
D. J.
, 1988, “
Modelling the Large Strain-High Temperature Response of Metals
,”
Modelling and Control of Casting and Welding Processes IV
,
Giamei
,
A. F.
, and
Abbaschian
,
G. J.
, eds.,
TMS Publications
, Warrendale, PA.
30.
Bammann
,
D. J.
,
Chiesa
,
M. L.
,
Horstemeyer
,
M. F.
, and
Weingarten
,
L. I.
, 1993, “
Failure in Ductile Materials Using Finite Element Methods
,”
Structural Crashworthiness and Failure
,
Jones
,
N.
, and
Wierzbicki
,
T.
, eds.,
Elsevier Applied Science, The Universities Press
, Belfast, pp.
1
54
.
31.
Horstemeyer
,
M. F.
, and
Wang
,
P.
, 2003, “
Cradle-to-Grave Simulation-Based Design Incorporating Multiscale Microstructure-Property Modeling: Reinvigorating Design with Science
,”
J. Comput.-Aided Mater. Des.
0928-1045,
10
(
1
), pp.
13
34
.
32.
Guo
,
Y. B.
,
Wen
,
Q.
, and
Horstemeyer
,
M. F.
, 2005, “
An Internal State Variable Plasticity-Based Approach to Determine Dynamic Loading History Effects on Material Property in Manufacturing Processes
,”
Int. J. Mech. Sci.
0020-7403,
47
(
9
), pp.
1423
1441
.
33.
Agarwal
,
H.
,
Gokhale
,
A. M.
,
Graham
,
S.
, and
Horstemeyer
,
M. F.
, 2002, “
Quantitative Characterization of Three-Dimensional Damage Evolution in a Wrought Al-Alloy Under Tension and Compression
,”
Metall. Mater. Trans. A
1073-5623,
33A
(
8
), pp.
2599
2606
.
You do not currently have access to this content.