A method is proposed to determine the variance of an arbitrary material property based on the statistics of the texture of polycrystalline materials for a specified volume. This method is applied to determine the variance of the Taylor factor (i.e., measure of plastic deformation in crystal plasticity) and is compared to a random sampling method. The results from the random sampling method correlated well with the statistical variance relationship when the magnitude of the variance was greater than that of the numerical errors observed in the statistical calculation. An empirical relation was also shown to model the results, and the constants for this relationship were determined for pseudo-three-dimensional Fe-3%Si. Implementation of the statistical variance relationship in true three-dimensional microstructures is not limited by material opacity, since it depends only on the two-point pair correlation functions. The connection between the variance of the R-value and variance of the Taylor factor is considered. Although only a weak connection was found, it was observed that relatively small variations in the Taylor factor yield large variances in the R-value.

1.
Gao
,
X.
,
Przybyla
,
C. P.
, and
Adams
,
B. L.
, 2006, “
Methodology for Recovering and Analyzing Two-Point Pair Correlation Functions in Polycrystalline Materials
,”
Metall. Mater. Trans. A
1073-5623,
37A
, pp.
1279
2387
.
2.
Ostoja-Starzewski
,
M.
, 2004, “
Material Spatial Randomness: From Statistical to Representative Volume Element
,”
Probab. Eng. Mech.
0266-8920,
21
, pp.
112
132
.
3.
Kanit
,
T.
,
Forest
,
S.
,
Galliet
,
I.
,
Mounoury
,
V.
, and
Jeulin
,
D.
, 2003, “
Determination of the Size of the Representative Volume Element for Random Composites: Statistical and Numerical Approach
,”
Int. J. Solids Struct.
0020-7683,
40
, pp.
3647
3679
.
4.
Bunge
,
H. J.
, 1993,
Texture Analysis in Materials Science
(English ed.),
Cuvillier Verlag
, Göttingen.
5.
Bunge
,
H. J.
, 1982, “
Mean Values of Physical Properties
,” Quantitative Texture Analysis, pp.
383
406
.
6.
Randle
,
V.
, 2003,
Microtexture Determination and its Applications
,
Maney for the Institute of Materials
, Minerals and Mining, London.
7.
Adams
,
B. L.
,
Wright
,
S. I.
, and
Kunze
,
K.
, 1993, “
Orientation Imaging: The Emergence of a New Microscopy
,”
Metall. Trans. A
0360-2133,
24A
, pp.
819
831
.
8.
Adams
,
B. L.
, 1993, “
Orientation Imaging Microscopy: Application to the Measurement of Grain Boundary Structure
,”
Mater. Sci. Eng., A
0921-5093,
A166
, pp.
59
66
.
9.
Dingley
,
D. J.
, and
Randle
,
V.
, 1992, “
Microtexture Determination by Electron Backscatter Diffraction
,”
J. Mater. Sci.
0022-2461,
27
, pp.
4545
4566
.
10.
Mason
,
T. A.
, and
Adams
,
B. L.
, 1999, “
Use of Microstructural Statistics in Predicting Polycrystalline Material Properties
,”
Metall. Mater. Trans. A
1073-5623,
30
, pp.
969
979
.
11.
Welch
,
P. I.
, and
Bunge
,
H. J.
, 1986, “
Influence of Grain Size on Plastic Anisotropy in Low Carbon Steels
,”
Mater. Sci. Technol.
0267-0836,
2
(
4
), pp.
354
362
.
12.
Skrotzki
,
B.
,
Starke
Jr.,
E. A.
, and
Shiflet
,
G. J.
, 1994, “
Effect of Texture and Precipitates on Mechanical Property Anisotropy of Al-Cu-Mg-X Alloys
,” In The 4th International Conference on Aluminum Alloys: Their Physical and Mechanical Properties,
2
, pp.
40
47
.
13.
Lee
,
P. S.
,
Piehler
,
H. R.
,
Rollett
,
A. D.
, and
Adams
,
B. L.
, 2002, “
Texture Clustering and Long-rang Disorientation Representation Methods: Application to 6022 Aluminum Sheet
,”
Metall. Mater. Trans. A
1073-5623,
33
, pp.
3709
3718
.
14.
Homer
,
E. R.
,
Basinger
,
J. A.
, and
Adams
,
B. L.
, 2005, “
Variance of the Grain Boundary Character Distribution
,”
Mater. Sci. Forum
0255-5476,
495-497
, pp.
871
876
.
15.
Lu
,
B. L.
, and
Torquato
,
S.
, 1990, “
Local Volume Fraction Fluctuations in Heterogeneous Media
,”
J. Chem. Phys.
0021-9606,
93
, pp.
3453
3459
.
16.
Quintanilla
,
J.
, and
Torquato
,
S.
, 1998, “
Local Volume Fraction Fluctuations in Random Media
,”
J. Chem. Phys.
0021-9606,
110
, pp.
3215
3219
.
17.
Wright
,
S. I.
, and
Field
,
D. P.
, 1998, “
Recent Studies of Local Texture and Its Influence on Failure
,”
Mater. Sci. Eng., A
0921-5093,
257
(
1
), pp.
165
170
.
18.
Duncan
,
J. L.
,
Goni
,
E.
, and
Johnson
,
W.
, 1967, “
Measurement of Normal Plastic Anisotropy in Sheet Metal
,”
J. Aust. Inst. Met.
0004-9352,
12
, pp.
127
138
.
19.
Liu
,
Y. C.
, 1983, “
On the R-value Measurements
,”
Metall. Trans. A
0360-2133,
14
, pp.
1199
1205
.
20.
Przybyla
,
C. P.
,
Adams
,
B. L.
, and
Miles
,
M. P.
, 2004, “
A Method for Determining Property Variance in Polycrystalline Materials
,”
NUMIFORM 2004: 8th International Conference on Numerical Methods in Industrial Forming Processes
,
S.
Ghosh
et al.
, eds., Columbus, OH, pp.
1760
1764
.
21.
Morawiec
,
A.
, 2004,
Orientations and Rotations: Computations in Crystallographic Textures
,
Springer
, New York.
22.
Paul
,
B.
, 1960, “
Prediction of Elastic Constants of Multiphase Materials
,”
Trans. AIME
0096-4778,
218
, pp.
36
41
.
23.
Hill
,
R.
, 1952, “
The Elastic Behavior of a Crystalline Aggregate
,”
Proc. R. Soc. London, Ser. A
1364-5021,
65
, pp.
349
354
.
24.
Reuss
,
A.
, 1929, “
Berechnung der Fliessgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle
,”
Z. Angew. Math. Mech.
0044-2267,
9
, pp.
49
58
.
25.
Voigt
,
W.
, 1928,
Lehrbuch der Kristallphysik
,
Teubner
, Leipzig.
26.
Kocks
,
U. F.
, 1970, “
The Relation Between Polycrystal Deformation and Single-Crystal Deformation
,”
Metall. Trans.
0026-086X,
1
, pp.
1121
1143
.
27.
Bishop
,
J. F. W.
, and
Hill
,
R.
, 1951,
Philos. Mag.
0031-8086,
42
, pp.
414
427
.
28.
Bishop
,
J. F. W.
, and
Hill
,
R.
, 1951,
Philos. Mag.
0031-8086,
42
, pp.
1298
1307
.
29.
McCoy
,
J. J.
, 1981, “
Macroscopic Response of Continua with Random Microstructures
,”
Mechanics Today
,
S.
Nemat-Nasser
, ed.,
6
, Pergamon, New York, pp.
1
40
.
30.
Kroner
,
E.
, 1972,
Statistical Continuum Mechanics
,
Springer
, Berlin.
31.
Gokhale
,
A. M.
,
Tewari
,
A.
, and
Garmestani
,
H.
, 2005, “
Constraints on Microstructural Two-point Correlation Functions
,”
Scr. Mater.
1359-6462,
53
, pp.
989
993
.
32.
Torquato
,
S.
, 2002,
Random Heterogeneous Materials
,
Springer-Verlag
, Berlin.
33.
Chin
,
G. Y.
, and
Mammel
,
W. L.
, 1969, “
Generalization and Equivalence of the Minimum Work (Taylor) and Maximum Work (Bishop-Hill) Principles for Crystal Plasticity
,”
Trans. Metall. Soc. AIME
0543-5722,
245
, pp.
1211
1214
.
34.
Chin
,
G. Y.
, and
Mammel
,
W. L.
, 1967, “
Computer Solutions of the Taylor Analysis for Axisymmetric Flow
,”
Trans. Metall. Soc. AIME
0543-5722,
239
, pp.
1400
1405
.
35.
Taylor
,
G. I.
, 1938, “
Plastic Strain in Metals
,”
J. Inst. Met.
0020-2975,
62
, pp.
307
324
.
36.
Hutchinson
,
J. W.
, 1976, “
Bounds and Self-consistent Estimates for Creep of Polycrystalline Materials
,”
Proc. R. Soc. London, Ser. A
1364-5021,
348
(
1652
), pp.
101
127
.
37.
Lankford
,
W. T.
,
Snyder
,
C. S.
, and
Bauscher
,
J. A.
, 1950, “
New Criteria for Predicting the Press Performance of Deep Drawing Sheets
,”
Trans. ASME
0097-6822,
42
, pp.
1197
1232
.
38.
Hosford
,
W. F.
, 2005,
Mechanical Behavior of Materials
, Cambridge.
39.
Choi
,
S. H.
, and
Barlat
,
F.
, 1999, “
Prediction of Macroscopic Anisotropy in Rolled Aluminum-Lithium Sheet
,”
Scr. Mater.
1359-6462,
41
(
9
), pp.
981
987
.
This content is only available via PDF.
You do not currently have access to this content.