Most of the early applications of thermal spray coatings were focused toward providing a remedy to excessive wear degradation. However, as the introduction of such coatings into wider industrial sections increases there is also exposure to other potential degradation processes—aqueous corrosion is one such process. The complex microstructures in cermet coatings have been shown to translate to complex modes of corrosion attack. In this paper an electrochemical test methodology to probe the local/microaspects of corrosion initiation and propagation will be described. A new electrochemical cell has been devised in which the corrosion can be followed “live” and in “real-time.” The surface is subjected to in situ imaging by atomic force microscopy which shows that not only the binder (Co, Cr) corrodes in high-velocity oxy-fuel thermal spray coatings but also the hard phase, with oxidation and dissolution of WCW2C taking place. Also potentiostatic tests indicated that the corrosion of WC-based coatings follows an Arrhenius relationship enabling the determination of activation energy (Ea) for the corrosion of WC and demonstrating that the oxidation and dissolution of WC are temperature, particle size, potential, and pH related

1.
Souza
,
V. A. D.
,
Neville
,
A.
,
Phillips
,
L.
,
Smith
,
P. A.
,
Gourdji
,
P.
, and
Wang
,
H. W.
, 2004, “
Meeting the Challenges in Pump Durability by Advanced Surface Engineering
,”
2nd International Symposium on Advanced Materials for Fluid Machinery
,
Institution of Mechanical Engineers Event Transactions
,
London, UK
, February, pp.
95
111
.
2.
Souza
,
V. A. D.
, and
Neville
,
A.
, 2005, “
Corrosion and Synergy in a WC-Co-Cr HVOF Thermal Spray Coating—Understanding Their Role in Erosion-Corrosion Degradation
,”
Wear
0043-1648,
259
, pp.
171
180
.
3.
Imasato
,
S.
,
Sakaguchi
,
S.
, and
Hayashi
,
Y.
, 2000, “
Corrosion Behaviour of WC-Ni-Cr Cemented Carbide in NaOH Solution
,”
Nippon Tungsten Review
,
32
, pp.
8
16
.
4.
Ghandehari
,
M. H.
, 1980, “
Anodic Behaviour of Cemented WC-6%Co Alloy in Phosphoric Acid Solutions
,”
J. Electrochem. Soc.
0013-4651,
127
, pp.
2144
2147
.
5.
Scholl
,
H.
,
Hofman
,
B.
, and
Rauscher
,
A.
, 1992, “
Anodic Polarisation of Cemented Carbides of the Type [(WC, M); M=Fe, Ni or Co] in Sulphuric Acid Solution
,”
Electrochim. Acta
0013-4686,
37
, pp.
447
452
.
6.
Tomlinson
,
W. J.
, and
Linzell
,
C. R.
, 1988, “
Anodic Polarisation and Corrosion of Cemented Carbides with Cobalt and Nickel Binders
,”
J. Mater. Sci.
0022-2461,
23
, pp.
914
918
.
7.
Takeda
,
M.
,
Morihiro
,
N.
,
Ebara
,
R.
, and
Harada
,
Y.
, 2002, “
Corrosion Behaviour of Thermally Sprayed WC Coating in Na2SO4 Aqueous Solution
,”
Mater. Trans., JIM
0916-1821,
43
, pp.
2860
2865
.
8.
Souza
,
V. A. D.
, and
Neville
,
A.
, 2006, “
Mechanisms and Kinetics of WC-Co-Cr HVOF Thermal Spray Coating Degradation in Corrosive Environments
,”
J. Therm. Spray Technol.
1059-9630,
15
, pp.
106
117
.
9.
Marcus
,
P.
, 2002,
Corrosion Mechanisms in Theory and Practice
,
2nd ed.
,
Marcel Dekker
,
New York
.
10.
de Wit
,
J. H. W.
, 2004, “
Local Potential Measurements With the SKPFM on Aluminum Alloys
,”
Electrochim. Acta
0013-4686,
49
, pp.
2841
2850
.
11.
Dove
,
P. M.
, and
Platt
,
F. M.
, 1996, “
Compatible Real-Time Rates of Mineral Dissolution by Atomic Force Microscopy (AFM)
,”
Chem. Geol.
0009-2541,
127
, pp.
331
338
.
12.
Pina
,
C. M.
,
Fernandez-Diaz
,
L.
,
Prieto
,
M.
, and
Putnis
,
A.
, 2000, “
In Situ Atomic Force Microscope Observations of a Dissolution-Crystallization Reaction: The Phosgenite-Cerussite Transformation
,”
Geochim. Cosmochim. Acta
0016-7037,
64
, pp.
215
221
.
13.
Nabi
,
T. M.
,
Sambe
,
H.
, and
Ramaker
,
D. E.
, 2001, “
AFM Study of Topographical Changes on Aluminum Surfaces in Sulfuric Acid Under Low Current Anodic Dissolution
,”
J. Electroanal. Chem.
0022-0728,
501
, pp.
33
40
.
14.
Perry
,
J. M.
,
Neville
,
A.
,
Wilson
,
V. A.
, and
Hodgkiess
,
T.
, 2001, “
Assessment of Corrosion Rates and Mechanisms of a WC-Co-Cr HVOF Coating in Static and Liquid-Solid Impingement Saline Environments
,”
Surf. Coat. Technol.
0257-8972,
137
, pp.
43
51
.
15.
Shreir
,
L. L.
, 1963,
Corrosion in Aqueous Solutions, Fundamentals of Corrosion
,
2nd ed
,
The Butterworth Group
,
London
, vol.
1
, pp.
1:80
1:110
.
16.
Souza
,
V. A. D.
, and
Neville
,
A.
, 2003, “
Corrosion of WC-Co-Cr Cermet Coatings Using In-Situ Atomic Force Microscopy
,”
Advancing the Science & Applying the Technology
C.
Moreau
and
B.
Marple
, eds.,
Proceedings of 2003 International Thermal Spray Conference ITSC
,
ASM International
, Orlando, FL, vol.
1
, 5–8 May, pp.
395
404
.
17.
McCartney
,
D. G.
,
Stewart
,
A.
, and
Shipway
,
P. H.
, 2000, “
Micro Structural Evolution In Thermally Sprayed WC–Co Coatings: Comparison Nanocomposite And Conventional Starting Powders
,”
Acta Mater.
1359-6454,
48
, pp.
1593
1604
.
18.
Souza
,
V. A. D.
, 2004, “
Corrosion and Erosion-Corrosion of WC-based Cermet Coatings—A Kinetic and Mechanistic Study
,” Ph.D. thesis, Heriot-Watt University, Edinburgh Scotland, UK.
19.
Teschke
,
O.
,
de Souza
,
E. F.
, and
Douglas
,
R. A.
, 1997, “
Atomic Force Microcopic Imaging in Liquids: Effects of the Film Compressed between the Substrate and the Tip
,”
Langmuir
0743-7463,
13
, pp.
6012
6017
.
20.
Teschke
,
O.
, and
de Souza
,
E. F.
, 1999, “
Dielectric Exchange: The Key Repulsive or Attractive Transient Forces between Atomic Force Microscope Tips and Charged Surfaces
,”
Appl. Phys. Lett.
0003-6951,
74
, pp.
1755
1757
.
21.
Sutthiruangwong
,
S.
,
Mori
,
G.
, and
Kosters
,
R.
, 2005, “
Passivity and Pseudopassivity of Cemented Carbides
,”
Int. J. Refract. Met. Hard Mater.
0263-4368,
23
, pp.
129
136
.
22.
Schnyder
,
B.
,
Stossel-Sittig
,
C.
,
Kotz
,
R.
,
Hochstrasser-Kurz
,
S.
,
Virtanen
,
S.
,
Jaeggi
,
C.
,
Eichenberger
,
N.
, and
Siegenthaler
,
H.
, 2004, “
Investigation Of The Electrochemical Behaviour Of WC–Co Hard Metal With Electrochemical And Surface Analytical Methods
,”
Surf. Sci.
0039-6028,
566–568
, pp.
1240
1245
.
23.
Sutthiruangwong, S,
Mori
,
G.
, and
Kosters
,
R.
, 2003, “
Corrosion Properties of Co-Based Cemented Carbides in Acidic Solutions
,”
Int. J. Refract. Met. Hard Mater.
0263-4368,
21
, pp.
135
145
.
24.
Laycock
,
N. J.
,
Moayed
,
M. H.
, and
Newman
,
R. C.
, 1998, “
Metastable Pitting Temperature
,”
J. Electrochem. Soc.
0013-4651,
145
, pp.
2622
2628
.
25.
Qvarfort
,
R.
, 1988, “
New Electrochemical Cell for Pitting Corrosion Testing
,”
Corros. Sci.
0010-938X,
28
, pp.
135
140
.
26.
Ohtsuka
,
T.
, and
Sato
,
N.
, 1981, “
Two Layer Formation of Passivating Films On Cobalt In Neutral Solution
,”
J. Electrochem. Soc.
0013-4651,
128
, pp.
2522
2528
.
27.
Hassan
,
S. A.
,
El-Basiouny
,
M. S.
, and
Hefny
,
M. M.
, 1980, “
On the Electrochemical Behaviour of Tungsten: The Formation and Dissolution of Tungsten Oxide in Sulphuric Acid Solutions
,”
Corros. Sci.
0010-938X,
20
, pp.
909
917
.
28.
Warren
,
A.
,
Nylund
,
A.
, and
Oleford
,
I.
, 1996, “
Oxidation of Tungsten and Tungsten Carbide in Dry and Humid Atmospheres
,”
Int. J. Refract. Met. Hard Mater.
0263-4368,
14
, pp.
345
353
.
29.
Voorhies
,
J. D.
, 1972, “
Electrochemical and Chemical Corrosion of Tungsten Carbide (WC)
,”
J. Electrochem. Soc.
0013-4651,
119
, pp.
219
222
.
30.
Andersson
,
K. M.
, and
Bergstrom
,
L.
, 2000, “
Oxidation and Dissolution of Tungsten Carbide Powder in Water
,”
Int. J. Refract. Met. Hard Mater.
0263-4368,
18
, pp.
121
129
.
31.
Bozzini
,
B.
,
De Gaudenzi
,
G. P.
,
Fanigliulo
,
A.
, and
Mele
,
C.
, 2004, “
Electrochemical Oxidation of WC in Acidic Sulphate Solution
,”
Corros. Sci.
0010-938X,
46
, pp.
453
469
.
32.
Nikolov
,
I.
,
Papazov
,
G.
, and
Naidenov
,
V.
, 1992, “
Activity and Corrosion of Tungsten Carbide Recombination Electrodes During Lead/Acid Battery Operation
,”
J. Power Sources
0378-7753,
40
, pp.
333
340
.
33.
Nikolov
,
I.
, and
Vitanov
,
T.
, 1980, “
The Effect of Method of Preparation on the Corrosion Resistance and Catalytic Activity During Corrosion of Tungsten carbide. I. Corrosion Resistance of Tungsten Carbide in Sulfuric Acid
,”
J. Power Sources
0378-7753,
5
, pp.
273
281
.
34.
McHardy
,
J.
, and
Bockris
,
J. O’M.
, 1973, “
Electrocatalysis of Oxygen Reduction by Sodium Tungsten Bronze
,”
J. Electrochem. Soc.
0013-4651,
120
, pp.
53
60
.
35.
Shul’ga
,
A. V.
, and
Nikishanov
,
V. V.
, 1991, “
Electrochemical-Corrosion Properties of Carbide Phases
,”
Prot. Met.
0033-1732,
27
, pp.
169
174
.
36.
Tsirlina
,
G. A.
, and
Petrii
,
O. A.
, 1987, “
Role of Carbon Deficiency And Anodic Activation In the Electrochemistry Of Carbide Materials
,”
Electrochim. Acta
0013-4686,
32
, pp.
637
647
.
37.
Tsirlina
,
G. A.
,
Petrii
,
O. A.
, and
Koloskova
,
E. F.
, 1986, “
Dissolution of Ditungsten Carbide Electrode in Acidic Media
,”
Sov. Electrochem.
0038-5387,
23
, pp.
395
397
.
38.
El-Anadouli
,
B. E.
,
Ateya
,
B. G.
, and
El-Nizamy
,
F. M.
, 1986, “
The Effect of Temperature on the Polarization Resistance-I. Activation Control
,”
Corros. Sci.
0010-938X,
26
, pp.
419
424
.
39.
Pagano
,
M. A.
, and
Lalvani
,
S. B.
, 1994, “
Corrosion of Mild Steel Subjected to Alternating Voltages in Seawater
,”
Corros. Sci.
0010-938X,
36
, pp.
127
140
.
40.
Jaszay
,
T.
,
Caprini
,
A.
,
Priem
,
F.
, and
Frayret
,
J. P.
, 1988, “
On the Anodic Dissolution of Titanium Between 15°C and 100°C In Deaerated 2M Hydrochloric Acid
,”
Electron. Appl.
0374-2938,
33
, pp.
1093
1100
.
You do not currently have access to this content.