Experiments on size effect on the failure loads of sandwich beams with PVC foam core and skins made of fiber-polymer composite are reported. Two test series use beams with notches at the ends cut in the foam near the top or bottom interface, and the third series uses beams without notches. The results demonstrate that there is a significant nonstatistical (energetic) size effect on the nominal strength of the beams, whether notched or unnotched. The observed size effect shows that the failure loads can be realistically predicted on the basis of neither the material strength concept nor linear elastic fracture mechanics (LEFM). It follows that nonlinear cohesive (quasi-brittle) fracture mechanics, or its approximation by equivalent LEFM, must be used to predict failure realistically. Based on analogy with the previous asymptotic analysis of energetic size effect in other quasibrittle materials, approximate formulas for the nominal strength of notched or unnotched sandwich beams are derived using the approximation by equivalent LEFM. Different formulas apply to beams with notches simulating pre-existing stress-free (fatigued) cracks, and to unnotched beams failing at crack initiation. Knowledge of these formulas makes it possible to identify from size effect experiments both the fracture energy and the effective size of the fracture process zone.

1.
Allen
,
H. G.
, 1969,
Analysis and Design of Sandwich Panels
,
Pergamon Press
,
London
.
2.
The Handbook of Sandwich Construction
, 1997,
D.
Zenkert
, ed.,
Engineering Materials Advisory Services (EMAS)
,
Warley, UK
.
3.
Gough
,
G. S.
,
Elam
,
C. F.
, and
De Bruyne
,
N. D.
, 1940, “
The Stabilization of a Thin Sheet by Continuous Supporting Medium
,”
J. R. Aeronaut. Soc.
0368-3931,
44
, pp.
12
43
.
4.
Goodier
,
J. N.
, and
Neou
,
I. M.
, 1951, “
The Evaluation of Theoretical Critical Compression in Sandwich Plates
,”
J. Aeronaut. Sci.
0095-9812,
18
, pp.
649
657
.
5.
Hansen
,
U.
, 1998, “
Compression Behavior of FRP Sandwich Specimens With Interface Debonds
,”
J. Compos. Mater.
0021-9983,
32
(
4
), pp.
335
360
.
6.
Hunt
,
G. W.
, and
de Silva
, and
L. S.
, 1990, “
Interactive Bending Behavior of Sandwich Beams
,”
ASME J. Appl. Mech.
0021-8936,
57
, pp.
189
196
.
7.
Pearce
T. R. A.
, and
Webber
J. P. H.
1972, “
Buckling of Sandwich Panels With Laminated Faceplates
,”
Aeronaut. Q.
0001-9259,
23
, pp.
148
160
.
8.
Plantema
,
F. J.
, 1966,
Sandwich Construction. The Bending and Buckling of Sandwich Beams, Plates and Shells
,
Wiley & Sons
,
New York
.
9.
Triantafillou
,
T. C.
, and
Gibson
,
L. G.
, 1987, “
Failure Mode Maps for Foam Core Sandwich Beams
,”
Mater. Sci. Eng.
0025-5416,
95
, pp.
37
53
.
10.
Hunt
,
G. W.
, and
Wadee
,
M. A.
, 1998, “
Localization and Mode Interaction in Sandwich Structures
,”
Proc. R. Soc. London
0962-8444,
454
, pp.
1197
1216
.
11.
Bažant
,
Z. P.
,
Daniel
,
I. M.
, and
Li
,
Z.
, 1996, “
Size Effect and Fracture Characteristics of Composite Laminates
,”
ASME J. Eng. Mater. Technol.
0094-4289,
118
(
3
), pp.
317
324
.
12.
Bažant
,
Z. P.
,
Kim
,
J.-J. H.
,
Daniel
,
I. M.
,
Becq-Giraudon
,
E.
, and
Zi
,
G.
, 1999, “
Size Effect on Compression Strength of Fiber Composites Failing by Kink Band Propagation
,”
Int. J. Fract.
0376-9429,
95
, pp.
103
141
.
13.
Bažant
,
Z. P.
,
Zhou
,
Y.
,
Novák
,
D.
, and
Daniel
,
I. M.
, 2004, “
Size Effect on Flexural Strength of Fiber-Composite Laminate
,”
ASME J. Eng. Mater. Technol.
0094-4289,
126
, pp.
29
37
.
14.
Bažant
,
Z. P.
, 2002, “
Size Effect Theory and Its Application to Fracture of Fiber Composites and Sandwich Plates
,”
Continuum Damage Mechanics of Materials and Structures
,
O.
Allix
and
F.
Hild
, eds.,
Elsevier
,
Amsterdam
, pp.
353
381
.
15.
Bažant
,
Z. P.
,
Zhou
,
Y.
,
Zi
,
G.
, and
Daniel
,
I. M.
, 2003, “
Size Effect and Asymptotic Matching Analysis of Fracture of Closed-Cell Polymeric foam
,”
Int. J. Solids Struct.
0020-7683,
40
, pp.
7197
7217
.
16.
Brocca
,
M.
,
Bažant
,
Z. P.
, and
Daniel
,
I. M.
, 2001, “
Microplane Model for Stiff Foams and Finite Element Analysis of Sandwich Failure by Core Indentation
,”
Int. J. Solids Struct.
0020-7683,
38
, pp.
8111
8132
.
17.
Daniel
,
I. M.
,
Gdoutos
,
E. E.
,
Wang
,
K.-A.
, and
Abot
,
J. L.
, 2002), “
Failure Modes of Composite Sandwich Beams
,”
Int. J. Damage Mech.
1056-7895,
11
(
4
), pp.
309
334
.
18.
Bayldon
,
J.
,
Bažant
,
Z. P.
,
Daniel
,
I. M.
, and
Yu
,
Q.
, 2006, “
Size Effect on Compressive Strength of Laminate-Foam Sandwich Plates
,”
ASME J. of Materials and Technology
,
128
, in press.
19.
Gdoutos
,
E. E.
,
Daniel
,
I. M.
,
Wang
,
K.-A.
, and
Abot
,
J. L.
, 2001, “
Nonlinear Behavior of Composite Sandwich Beams in Three-Point Bending
,”
Exp. Mech.
0014-4851,
41
, pp.
182
188
.
20.
Zenkert
,
D.
, 1990, “
Strength of Sandwich Beams With Mid-Plane Debondings in the Core
,”
Compos. Struct.
0263-8223,
15
(
4
), pp.
279
299
.
21.
Zenkert
,
D.
, 1991, “
Strength of Sandwich Beams With Interface Debondings
,”
Compos. Struct.
0263-8223,
17
(
4
), pp.
331
350
.
22.
Bažant
,
Z. P.
, 1984, “
Size Effect in Blunt Fracture: Concrete, Rock, Metal
,”
J. Eng. Mech.
0733-9399,
110
(
4
), pp.
518
535
.
23.
Bažant
,
Z. P.
, 2002,
Scaling of Structural Strength
.
Hermes Penton Science (Kogan Page Science)
, London (also: French translation with updates,
Hermes
,
Paris
, 2004).
24.
Bažant
,
Z. P.
, 2004, “
Scaling Theory for Quasibrittle Structural Failure
,”
Proc. of the National Academy of Sciences
, in press.
25.
Bažant
,
Z. P.
, 1997, “
Scaling of Quasibrittle Fracture: Asymptotic Analysis
,”
Int. J. Fract.
0376-9429,
83
(
1
), pp.
19
40
.
26.
Bažant
,
Z. P.
, and
Chen
,
E.-P.
, 1997, “
Scaling of Structural Failure
,”
Appl. Mech. Rev.
0003-6900,
50
(
10
), pp.
593
627
.
27.
Bažant
,
Z. P.
, and
Kazemi
,
M. T.
, 1990, “
Size Effect in Fracture of Ceramics and Its Use to Determine Fracture Energy and Effective Process Zone Length
,”
J. Am. Ceram. Soc.
0002-7820,
73
(
7
), pp.
1841
1853
.
28.
Bažant
,
Z. P.
, and
Planas
,
J.
, 1998,
Fracture and Size Effect in Concrete and Other Quasibrittle Materials
,
CRC Press
,
Boca Raton, FL
.
29.
RILEM Committee QFS
, 2004, “
Quasibrittle Fracture Scaling and Size Effect—Final Report
,”
Mater. Struct.
1359-5997
37
(
272
), pp.
547
586
.
30.
Benson
,
A. S.
, and
Mayers
,
J.
, 1967, “
General Instability and Face Wrinkling of Sandwich Plates—Unified Theory and Applications
,”
AIAA J.
0001-1452,
pp.
729
739
.
31.
Cheng
,
S.-H.
,
Lin
,
C.-C.
, and
Wang
,
J. T.-S.
, 1997, “
Local Buckling of Delaminated Sandwich Beams Using Continuous Analysis
,”
Int. J. Solids Struct.
0020-7683,
34
(
2
), pp.
275
288
.
32.
Gdoutos
,
E. E.
,
Daniel
,
I. M.
, and
Wang
,
K.-A.
, 2003, “
Compression Facing Wrinkling of Composite Sandwich Structures
,”
Mech. Mater.
0167-6636,
35
(
3–6
), pp.
511
522
.
33.
Hadi
,
B. K.
, and
Matthews
,
F. L.
, 2000, “
Development of Benson-Mayers Theory on the Wrinkling of Anisotropic Sandwich Panels
,”
Comput. Struct.
0045-7949,
49
, pp.
425
434
.
34.
Hoff
,
N. J.
, and
Mautner
,
S. E.
, 1945, “
The Buckling of Sandwich-Type Panels
,”
J. Aeronaut. Sci.
0095-9812,
12
, pp.
285
297
.
35.
Heath
,
W. G.
, 1960, “
Sandwich Construction. Part 2: The Optimum Design of Flat Sandwich Panels
,”
Aircr. Eng.
0002-2667,
31
, pp.
230
235
.
36.
Stifflinger
,
M. A.
, and
Rammerstorfer
,
F. G.
, 1997, “
Face-Layer Wrinkling in Sandwich Shells—Theoretical and Experimental Investigations
,”
Thin-Walled Struct.
0263-8231,
29
, pp.
113
127
.
37.
Vonach
,
W. K.
, and
Rammerstorfer
,
F.-G.
, 2000, “
The Effect of In-plane Core Stiffness on the Wrinkling Behavior of Thick Sandwiches
,”
Acta Mech.
0001-5970,
141
, pp.
1
10
.
38.
Bažant
,
Z. P.
, and
Cedolin
,
L.
, 2003,
Stability of Structures: Elastic, Inelastic, Fracture and Damage Theories
,
2nd ed.
,
Dover
,
New York
.
39.
Bažant
,
Z. P.
, and
Li
,
Z.
, 1996, “
Zero-Brittleness Size-Effect Method for One-Size Fracture Test of Concrete
,”
J. Eng. Mech.
0733-9399,
122
(
5
), pp.
458
468
.
40.
Timoshenko
,
S. P.
, and
Goodier
,
J. N.
, 1987,
Theory of Elasticity
,
3rd ed.
McGraw-Hill
,
New York
.
You do not currently have access to this content.