The internal friction Q1 and the Young’s modulus E of NiTi based alloys have been measured as a function of temperature after various thermomechanical and hydrogen-doping treatments given to the materials. Hydrogen is found to play a major role introducing tall damping peaks associated with Snoek-type and H-twin boundary relaxations. Levels of Q1 as high as 0.08 have been detected, which are among the highest to date measured in metal alloy systems. For appropriate alloy compositions, these peaks occur at around room temperature (for acoustical frequencies), thus providing a good opportunity to reduce machinery vibrations and noise pollution. In the paper, the conditions are highlighted under which maximum efficiency can be reached in the conversion of mechanical energy into heat.

1.
Otsuka
,
K.
, and
Wayman
,
M.
, 1998,
Shape Memory Materials
,
Cambridge University Press
, Cambridge, England, Chap. 3.
2.
Han
,
X. D.
,
Zou
,
W. H.
,
Wang
,
R.
,
Zhang
,
Z.
, and
Yang
,
D. Z.
, 1996, “
Structure and Substructure of Martensite in a Ti36.5Ni48.5Hf15 High Temperature Shape Memory Alloy
,”
Acta Mater.
1359-6454,
44
, pp.
3711
3721
.
3.
Nam
,
T. H.
,
Saburi
,
T.
, and
Shimizu
,
K.
, 1990, “
Cu-Content Dependence of Shape Memory Characteristics in Ti‐Ni‐Cu Alloys
,”
Mater. Trans., JIM
0916-1821,
31
, pp.
959
967
.
4.
Nam
,
T. H.
,
Saburi
,
T.
,
Nakata
,
Y.
, and
Shimizu
,
K.
, 1990, “
Shape Memory Characteristics and Lattice Deformation in Ti‐Ni‐Cu Alloys
,”
Mater. Trans., JIM
0916-1821,
31
, pp.
1050
1056
.
5.
Hogdson
,
D. E.
, 2002, “
Damping Applications of Shape Memory Alloys
,”
Mater. Sci. Forum
0255-5476,
394-395
, pp.
69
74
.
6.
Liu
,
Y.
,
Van Humbeeck
,
J.
,
Stalmans
,
R.
, and
Delaey
,
L.
, 1997, “
Some Aspects of the Properties of NiTi Shape Memory Alloys
,”
J. Alloys Compd.
0925-8388,
247
, pp.
115
121
.
7.
Hasiguti
,
R. R.
, and
Iwasaki
,
K.
, 1968, “
Internal Friction and Related Properties of the NiTi Intermetallic Compound
,”
J. Appl. Phys.
0021-8979,
39
, pp.
2182
2186
.
8.
Mercier
,
O.
,
Melton
,
K. N.
, and
de Preveille
,
Y.
, 1979, “
Low-Frequency Internal Friction Peaks Associated With The Martensitic Phase Transformation of NiTi
,”
Acta Metall.
0001-6160,
27
, pp.
1467
1475
.
9.
Tirbonod
,
B.
, and
Koshimizu
,
S.
, 1981, “
Dislocation Relaxation in the Martensitic Phase of the Thermoelastic NiTi and NiTiCu Alloys
,”
J. Phys. (Paris)
0302-0738,
42
(
C5
), pp.
1043
1046
.
10.
Bidaux
,
J. E.
,
Schaller
,
R.
, and
Benoit
,
W.
, 1989, “
Transient Internal Friction and Martensitic Phase Transformations
,”
Acta Metall.
0001-6160,
37
, pp.
803
811
.
11.
Zhu
,
J. S.
,
Schaller
,
R.
, and
Benoit
,
W.
, 1988, “
Internal Friction Transitory Effects Associated With Martensitic Transformation in NiTi Alloys
,”
Phys. Status Solidi A
0031-8965,
108
, pp.
613
618
.
12.
Wu
,
S. K.
,
Lin
,
H. C.
, and
Chou
,
T. S.
, 1990, “
A Study of Electrical Resistivity, Internal Friction and Shear Modulus on an Aged Ti49Ni51 Alloy
,”
Acta Metall. Mater.
0956-7151,
38
, pp.
95
102
.
13.
Zhu
,
J. S.
,
Schaller
,
R.
, and
Benoit
,
W.
, 1990, “
Low Temperature Relaxation Peak in NiTi Alloys
,” Proc. ICIFUAS-9,
T. S.
,
ed.
,
Pergamon Press
pp.
361
364
.
14.
Lo
,
Y. C.
,
Wu
,
S. K.
, and
Horng
,
H. E.
1993, “
A Study of B2↔B19↔B19′ Two-Stage Martensitic Transformation in a Ti50Ni40Cu10 Alloy
,”
Acta Metall. Mater.
0956-7151,
41
, pp.
747
1759
.
15.
Mari
,
D.
,
Bataillard
,
L.
,
Dunand
,
D. C.
, and
Gotthardt
,
R.
, 1995, “
Martensitic Transformation of NiTi and NiTi‐TiC Composites
,”
J. Phys. IV
1155-4339,
C8
, pp.
659
664
.
16.
Pelosin
,
V.
, and
Rivière
,
A.
, 1998, “
Effect of Thermal Cycling on the R-Phase Martensitic Transformation in a Ti-Rich NiTi Alloy
,”
Metall. Mater. Trans. A
1073-5623,
29A
, pp.
1175
1180
.
17.
Golyandin
,
S.
,
Kustov
,
S.
,
Sapozhnikov
,
K.
,
Parlinska
,
M.
,
Gotthardt
,
R.
,
Van Humbeeck
,
J.
, and
De Batist
,
R.
, 2000, “
Structural Anelasticity of NiTi During Two-Stage Martensitic Transformation
,”
J. Alloys Compd.
0925-8388,
310
, pp.
312
317
.
18.
Yoshida
,
I.
,
Monma
,
D.
,
Iino
,
K.
,
Otsuka
,
K.
,
Asai
,
M.
, and
Tsuzuki
,
H.
, 2003 “
Damping Properties of Ti50Ni50−xCux Alloys Utilizing Martensitic Transformation
,”
J. Alloys Compd.
0925-8388,
355
, pp.
79
84
.
19.
Wu
,
S. K.
, and
Lin
,
H. C.
, 2003, “
Damping Characteristics of TiNi Binary and Ternary Shape Memory Alloys
,”
J. Alloys Compd.
0925-8388,
355
, pp.
72
78
.
20.
Lin
,
H. C.
,
Wu
,
S. K.
, and
Chou
,
T. S.
, 2003, “
Aging Effect on the Low Temperature Internal Friction Relaxation Peak in a Ti49Ni51 Alloy
,”
J. Alloys Compd.
0925-8388,
355
, pp.
90
96
.
21.
Yoshida
,
I.
, and
Yoshida
,
S.
, 2003, “
Damping Capacity of TiNi Shape Memory Alloys
,”
Solid State Phenom.
1012-0394,
89
, pp.
315
320
.
22.
Igata
,
N.
,
Urahashi
,
N.
,
Sasaki
,
M.
, and
Kogo
,
Y.
, 2003, “
High Damping Capacity Due to Two-Step Phase Transformation in NiTi, NiTiCu, and FeCrMn Alloys
,”
J. Alloys Compd.
0925-8388,
355
, pp.
85
89
.
23.
Van Humbeeck
,
J.
, 1996, “
Damping Properties of Shape Memory Alloys During Phase Transformation
,”
J. Phys. IV
1155-4339,
C8
, pp.
371
380
.
24.
Van Humbeeck
,
J.
, 2003, “
Damping Capacity of Thermoelastic Martensite in Shape Memory Alloys
,”
J. Alloys Compd.
0925-8388,
355
, pp.
58
64
.
25.
Mazzolai
,
F. M.
,
Biscarini
,
A.
,
Campanella
,
R.
,
Coluzzi
,
B.
, and
Mazzolai
,
G.
, 2003, “
Martensitic Transformations in NiTi(Me) Shape Memory Alloys as Studied by Mechanical Spectroscopy
,”
Recent Res. Dev. Mater. Sci.
,
4
, pp.
191
211
.
26.
Mazzolai
,
F. M.
,
Biscarini
,
A.
,
Coluzzi
,
B.
, and
Mazzolai
,
G.
, 2004, “
Hydrogen Diffusion and Interpretation of the 200K Anelastic Relaxation in NiTi Alloys
,”
Appl. Phys. Lett.
0003-6951,
85
, pp.
2756
2758
.
27.
Coluzzi
,
B.
,
Biscarini
,
A.
,
Campanella
,
R.
,
Trotta
,
L.
,
Mazzolai
,
G.
,
Tuissi
,
A.
, and
Mazzolai
,
F. M.
, 1999, “
Mechanical Spectroscopy and Twin Boundary Properties in a Ni50.8Ti49.2 Alloy
,”
Acta Mater.
1359-6454,
47
, pp.
1965
1976
.
28.
Biscarini
,
A.
,
Coluzzi
,
B.
,
Campanella
,
R.
,
Mazzolai
,
G.
,
Trotta
,
L.
,
Tuissi
,
A.
, and
Mazzolai
,
F. M.
, 1999, “
Martensitic Transitions and Mechanical Spectroscopy of Ni50.8Ti49.2 Alloy Containing Hydrogen
,”
Acta Mater.
1359-6454,
47
, pp.
4525
4533
.
29.
Liang
,
X. L.
,
Ren
,
X.
,
Shen
,
H. M.
,
Wang
,
Y. N.
,
Otsuka
,
K.
, and
Suzuki
,
T.
, 2001, “
Ultrasonic Attenuation Study of NiTi and NiTiCu Single Crystals
,”
Scr. Mater.
1359-6462,
45
, pp.
591
596
.
30.
Rotini
,
A.
,
Biscarini
,
A.
,
Campanella
,
R.
,
Coluzzi
,
B.
,
Mazzolai
,
G.
, and
Mazzolai
,
F. M.
, 2001, “
Martensitic Transition in a Ni40Ti50Cu10 Alloy Containing Hydrogen: Calorimetric (DSC) and Mechanical Spectroscopy Experiments
,”
Scr. Mater.
1359-6462
44
, pp.
719
724
.
31.
Biscarini
,
A.
,
Coluzzi
,
B.
,
Mazzolai
,
G.
,
Tuissi
,
A.
, and
Mazzolai
,
F. M.
, 2003, “
Extraordinary High Damping of Hydrogen-Doped NiTi and NiTiCu Shape Memory Alloys
,”
J. Alloys Compd.
0925-8388,
355
, pp.
52
57
.
32.
Biscarini
,
A.
,
Coluzzi
,
B.
,
Mazzolai
,
G.
,
Tuissi
,
A.
, and
Mazzolai
,
F. M.
, 2003, “
Mechanical Spectroscopy of the H-Free and H-Doped Ni30Ti50Cu20 Shape Memory Alloy
,”
J. Alloys Compd.
0925-8388,
356-357
, pp.
669
672
.
33.
Mazzolai
,
F. M.
,
Biscarini
,
A.
,
Campanella
,
R.
,
Coluzzi
,
B.
,
Mazzolai
,
G.
,
Rotini
,
A.
, and
Tuissi
,
A.
, 2003, “
Internal Friction Spectra of Ni40Ti50Cu10 Shape Memory Alloy Charged with Hydrogen
,”
Acta Mater.
1359-6454
51
, pp.
573
583
.
34.
Coluzzi
,
B.
,
Biscarini
,
A.
,
Mazzolai
,
G.
,
Mazzolai
,
F. M.
, and
Tuissi
,
A.
, 2004, “
Damping Spectrum of H-Free and H-Doped Shape Memory Alloys NiTiHfCu at kHz Frequencies
,”
Scr. Mater.
1359-6462,
51
, pp.
199
202
.
35.
Coluzzi
,
B.
,
Biscarini
,
A.
,
Mazzolai
,
G.
, and
Mazzolai
,
F. M.
, 2006, “
Damping Properties of Vacuum Annealed and H-doped NiTi Based Alloys at Low Stress Amplitudes
,”
Key Eng. Mater.
1013-9826,
319
, pp.
1
8
.
36.
Biscarini
,
A.
,
Campanella
,
R.
,
Coluzzi
,
B.
,
Di Masso
,
L.
,
Mazzolai
,
G.
, and
Mazzolai
,
F. M.
, 1999, “
Twin Boundary Motions and Associated Elastic and Anelastic Features in H-Doped NiTi Alloys
,”
Proc. Internat. Conf. on Solid-Solid Phase Trans.
,
M.
Koiwa
,
K.
Otsuka
, and
T.
Miyazaki
,
eds.
, The Japan Institute of Metals, Kyoto, JIMC-3, pp.
1040
1043
.
37.
Biscarini
,
A.
,
Coluzzi
,
B.
,
Mazzolai
,
G.
, and
Mazzolai
,
F. M.
, 2005, “
Diffusion of Hydrogen in the Shape Memory Alloy Ni47Ti40Hf10Cu3
,”
J. Alloys Compd.
0925-8388,
404
, pp.
261
264
.
38.
Mazzolai
,
G.
,
Biscarini
,
A.
,
Coluzzi
,
B.
,
Mazzolai
,
F. M.
, and
Straube
,
U.
, 2006, “
Diffusion of Hydrogen in the Ni30Ti50Cu20 Shape Memory Alloy
,”
Solid State Phenom.
1012-0394, in press.
39.
Wang
,
Y. C.
,
Ludwigson
,
M.
, and
Lakes
,
R. S.
, 2004, “
Deformation of Extreme Viscoelastic Metals and Composites
,”
Mater. Sci. Eng., A
0921-5093
370
, pp.
41
49
.
40.
Soubeiroux
,
J. L.
,
Fruchart
,
D.
,
Lorthioir
,
G.
,
Ochin
,
P.
, and
Colin
,
D.
, 1993, “
Structural Study of the Hydrides NiTiHx (x=1.0 and 1.4)
,”
J. Alloys Compd.
0925-8388
196
, pp.
127
132
.
41.
Mizubayashi
,
H.
,
Ishikawa
,
Y.
, and
Tanimoto
,
A.
, 2003, “
Study of Hydrogenated Amorphous Alloys as High-Strength and High-Damping Materials
,”
J. Alloys Compd.
0925-8388,
355
, pp.
31
36
.
You do not currently have access to this content.