We examine the mechanical behavior of anodic alumina thin films with organized nanometer-scale porosity. The cylindrical pores in the alumina film are arranged perpendicular to the film thickness in a near-perfect triangular lattice. The films used in this work had pore diameters ranging from 35 to 75nm, and volume fractions ranging from 10% to 45%. Films with both amorphous and crystalline structures were considered. Mechanical properties of the thin films were studied using an instrumented indentor to measure the force-depth response of the films during indentation or the force-deflection response of micromachined beams in bending. The films showed increasing hardness/modulus with a decrease in pore volume fraction or transformation from amorphous to a polycrystalline alpha-alumina phase. The asymmetric films show higher hardness and modulus on their barrier side (with closed pores) relative to their open pore side. The force-depth response, measured with a spherical ball indentor, demonstrates fairly good agreement with an elastic Hertzian contact solution. The force-depth response, measured with a sharp Vickers indentor, shows an elastoplastic response. Microcracking at the corners of sharp indentations was not observed in amorphous nanoporous films, and rarely in harder, crystalline nanoporous films. High-resolution scanning electron microscopy revealed a collapse of the nanoporous structure beneath the indentor tip during sharp indentation. The results are discussed in light of continuum-based models for the elastic properties of porous solids. In general, the models are not capable of predicting the change in modulus of the films, given pore volume fraction and the properties of bulk crystalline alumina.

1.
Keller
,
F.
,
Hunter
,
M. S.
, and
Robinson
,
D. L.
, 1953,
J. Electrochem. Soc.
0013-4651,
100
, p.
411
.
2.
Hoar
,
T. P.
, and
Mott
,
N. F.
, 1959,
Phys. Chem. Solids
0369-8726,
9
, p.
97
.
3.
Sullivan
,
J. P.
, and
Wood
,
G. C.
, 1970,
Proc. R. Soc. London, Ser. A
1364-5021,
317
, p.
511
.
4.
Thompson
,
G. E.
,
Furneaux
,
R. C.
,
Wood
,
G. C.
,
Richarson
,
J. A.
, and
Goode
,
J. S.
, 1978,
Nature (London)
0028-0836,
272
, p.
433
.
5.
Thompson
,
G. E.
, 1997,
Thin Solid Films
0040-6090,
297
, p.
192
.
6.
Mardilovich
,
P. P.
,
Govyadinov
,
A. N.
,
Mukhurov
,
N. I.
,
Rzhevskii
,
A. M.
, and
Paterson
,
R.
, 1995,
J. Membr. Sci.
0376-7388,
98
, p.
131
.
7.
Masuda
,
H.
, and
Fukuda
,
K.
, 1995,
Science
0036-8075,
268
, p.
1466
.
8.
AlMawlawi
,
D.
,
Coombs
,
N.
, and
Moskovits
,
M.
, 1991,
J. Appl. Phys.
0021-8979,
70
, p.
4421
.
9.
Pontifex
,
G. H.
,
Zhang
,
P.
,
Wang
,
Z.
,
Haslett
,
T. L.
,
AlMawlawi
,
D.
, and
Moskovits
,
M.
, 1991,
J. Phys. Chem.
0022-3654,
95
, p.
9989
.
10.
Klein
,
J. D.
,
Herrick
,
R. D.
, II
,
Palmer
,
D.
,
Sailor
,
M. J.
,
Brumlik
,
C. J.
, and
Martin
,
C. R.
, 1993,
Chem. Mater.
0897-4756,
5
, p.
902
.
11.
Routkevich
,
D.
,
Tager
,
A.
,
Haruyama
,
J.
,
Al-Mawlawi
,
D.
,
Moskovits
,
M.
, and
Xu
,
J. M.
, 1996,
IEEE Trans. Electron Devices
0018-9383,
43
, p.
1646
.
12.
Routkevitch
,
D.
,
Bigioni
,
T.
,
Moskovits
,
M.
, and
Xu
,
J. M.
, 1996,
J. Phys. Chem.
0022-3654,
100
, p.
14037
.
13.
Suh
,
J. S.
, and
Lee
,
J. S.
, 1999,
Appl. Phys. Lett.
0003-6951,
75
, p.
2047
.
14.
Li
,
A. P.
,
Muller
,
F.
,
Birner
,
A.
,
Nielsch
,
K.
, and
Gosele
,
U.
, 1999,
J. Vac. Sci. Technol. A
0734-2101,
17
, p.
1428
.
15.
Rajeswar
,
K.
,
deTacconi
,
N. R.
, and
Chenthamarakshan
,
C. R.
, 2001,
Chem. Mater.
0897-4756,
13
, p.
2765
.
16.
Li
,
A.-P.
,
Muller
,
F.
,
Birner
,
A.
,
Nielsch
,
K.
, and
Gosele
,
U.
, 1999,
Adv. Mater. (Weinheim, Ger.)
0935-9648,
11
, p.
483
.
17.
Govyadinov
,
A.
,
Mardilovich
,
P.
,
Novogradecz
,
K.
,
Hooker
,
S.
, and
Routkevitch
,
D.
, 2000,
Proc ASME Congress, MEMS
Orlando
, ASME, New York, Vol.
2
, p.
313
.
18.
Routkevitch
,
D.
,
Govyadinov
,
A.
, and
Mardilovich
,
P.
, 2000,
Proc ASME Congress, MEMS
,
Orlando
, ASME, New York, Vol.
2
, p.
39
.
19.
Shawaqfeh
,
A. T.
, and
Baltus
,
R. E.
, 1998,
J. Electrochem. Soc.
0013-4651,
145
, p.
2699
.
20.
Shimizu
,
K.
,
Alwitt
,
R. S.
, and
Liu
,
Y. C.
, 2000,
J. Electrochem. Soc.
0013-4651,
147
, p.
1388
.
21.
Sui
,
Y. C.
,
Cui
,
B. Z.
,
Martinez
,
L.
,
Perez
,
R.
, and
Sellmyer
,
D. J.
, 2002,
Thin Solid Films
0040-6090,
406
, p.
64
.
22.
Mardilovich
,
P. P.
,
Govyadinov
,
A. N.
,
Mazurenko
,
N. I.
, and
Paterson
,
R.
, 1995,
J. Membr. Sci.
0376-7388,
98
, p.
143
.
23.
Varghese
,
O. K.
,
Gong
,
D. W.
,
Paulose
,
M.
,
Ong
,
K. G.
,
Grimes
,
C. A.
, and
Dickey
,
E. C.
, 2002,
J. Mater. Res.
0884-2914,
17
, p.
1162
.
24.
Skeldon
,
P.
,
Wang
,
H. W.
, and
Thompson
,
G. E.
, 1997,
Wear
0043-1648,
206
, p.
187
.
25.
Gonzalez
,
J. A.
,
Lopez
,
V.
,
Otero
,
E.
, and
Bautisa
,
A.
, 2000,
J. Electrochem. Soc.
0013-4651,
147
, p.
984
.
26.
Alcala
,
G.
,
Skeldon
,
P.
,
Thompson
,
G. E.
,
Mann
,
A. B.
,
Habazaki
,
H.
, and
Shimizu
,
K.
, 2002,
Nanotechnology
0957-4484,
13
, p.
451
.
27.
Hay
,
J. L.
, and
Pharr
,
G. M.
, 1989,
ASM Handbook
,
ASM
, Metals Park, OH, Vol.
8
, p.
231
.
28.
Doerner
,
M. F.
, and
Nix
,
W. D.
, 1986,
J. Mater. Res.
0884-2914,
1
, p.
601
.
29.
Oliver
,
W. C.
, and
Pharr
,
G. M.
, 1992,
J. Mater. Res.
0884-2914,
7
, p.
1564
.
30.
Pharr
,
G. M.
,
Oliver
,
W. C.
, and
Brotzen
,
F. R.
, 1992,
J. Mater. Res.
0884-2914,
7
, p.
613
.
31.
Pharr
,
G. M.
, 1998,
Mater. Sci. Eng., A
0921-5093,
253
, p.
151
.
32.
Giannakopoulos
,
A. E.
,
Larson
,
P.-L.
, and
Vastergaard
,
R.
, 1994,
Int. J. Solids Struct.
0020-7683,
31
, p.
2679
.
33.
Giannakopoulos
,
A. E.
, and
Suresh
,
S.
, 1999,
Scr. Mater.
1359-6462,
40
, p.
1191
.
34.
Stelmashenko
,
N. A.
,
Walls
,
M. G.
,
Brown
,
L. M.
, and
Milman
,
Yu. V.
, 1993,
Acta Metall. Mater.
0956-7151,
41
, p.
2855
.
35.
Stelmashenko
,
N. A.
, and
Brown
,
L. M.
, 1996,
Philos. Mag. A
0141-8610,
74
, p.
1195
.
36.
Alcala
,
J.
,
Barone
,
A. C.
, and
Anglada
,
M.
, 2000,
Acta Mater.
1359-6454,
48
, p.
3451
.
37.
Gall
,
K.
,
Juntunen
,
K.
,
Maier
,
H. J.
,
Sehitoglu
,
H.
, and
Chumlyakov
,
Y.
, 2001,
Acta Mater.
1359-6454,
49
, p.
3205
.
38.
Wu
,
Y. Q.
,
Yang
,
X. Y.
, and
Xu
,
Y. B.
, 1999,
Acta Mater.
1359-6454,
47
, p.
2431
.
39.
Wu
,
Y. Q.
, and
Xu
,
Y. B.
, 1999,
J. Mater. Res.
0884-2914,
14
, p.
682
.
40.
Latella
,
B. A.
,
’OConnor
,
B. H.
,
Padture
,
N. P.
, and
Lawn
,
B. R.
, 1997,
J. Am. Ceram. Soc.
0002-7820,
80
, p.
1027
.
41.
DiGiovanni
,
A. A.
,
Chan
,
H. M.
,
Harmer
,
M. P.
, and
Nied
,
H. F.
, 1999,
J. Am. Ceram. Soc.
0002-7820,
82
, p.
749
.
42.
DiGiovanni
,
A. A.
,
Chan
,
H. M.
,
Harmer
,
M. P.
, and
Nied
,
H. F.
, 2001,
J. Am. Ceram. Soc.
0002-7820,
84
, p.
1844
.
43.
Fischer-Cripps
,
A. C.
, 2002,
Nanoindentation
,
Springer
, New York.
44.
Elam
,
J. W.
,
Routkevitch
,
D.
,
Mardilovich
,
P. P.
, and
George
,
S. M.
, 2003,
Chem. Mater.
0897-4756,
15
, p.
3507
.
45.
Gibson
,
L. J.
, and
Ashby
,
M. F.
, 1999,
Cellular Solids: Structure and Properties
,
Cambridge Solid State Science Series
,
Cambridge University Press
, Cambridge, England.
46.
Carvalho
,
F. C. S.
, and
Labuz
,
J. F.
, 1996,
Int. J. Solids Struct.
0020-7683,
33
, p.
4119
.
You do not currently have access to this content.