This paper studies the creep-fatigue life evaluation of solder under push-pull loading using fast-fast, fast-slow, slow-fast, slow-slow, and strain-hold strain waves. Extensive creep-fatigue data were generated using these strain waves and the applicability of four conventional creep-fatigue damage rules, the linear damage rule, the frequency modified fatigue life, the ductility exhaustion model, and the strain range partitioning method, was examined. No conventional damage rules evaluated creep-fatigue lives accurately. Only the grain boundary sliding model, developed recently for solders, predicted creep-fatigue lives with a small scatter.
Issue Section:
Research Papers
1.
Frear
, D. R.
, and Kinsman
, K. R.
, 1991, Solder Mechanics, The Mineral, Metals & Materials Society, Warrendale, Pennsylvania.2.
Ju
, S.-H.
, Sandor
, B.
, and Plesha
, M. E.
, 1996, “Creep Rupture Investigation of 63Sn-37Pb Solder by Experiments and Damage Mechanics
,” J. Test. Eval.
0090-3973, 24
(6
), pp. 411
–418
.3.
Stephens
, J. J.
, and Frear
, D. R.
, 1999, “Time-Dependent Deformation Behavior of Near-Eutectic 60Sn-40Pb Solder
,” Metall. Mater. Trans. A
1073-5623, 30A
(5
), pp. 1301
–1313
.4.
Ohguhchi
, K.
, and Sasaki
, K.
, 2001, “Description of Temperature Dependence and Creep Deformation of 60Sn-40Pb Solder Alloys
,” Jpn. Soc. Mech. Eng. Int. J. A
, 44
(1
), pp. 82
–88
.5.
Kitano
, M.
, Shimizu
, T.
, Kumazawa
, T.
, and Ito
, Y.
, 1987, “Statistical Fatigue Life Estimation: The Influence of Temperature and Composition on Low-Cycle Fatigue of Tin-Lead Solders
,” Current Japan Material Research
, 2
, pp. 235
–250
.6.
Solomon
, H. D.
, 1991, “Low Cycle Fatigue of Sn96 Solder with Reference to Eutectic Solder and a High Pb Solder
”, ASME J. Electron. Packag.
1043-7398, 113
(2
), pp. 102
–108
.7.
Kanchanomai
, C.
, Miyashita
, Y.
, and Mutoh
, Y.
, 2002, “Low Cycle Fatigue Behavior and Mechanisms of a Eutectic Sn-Pb Solder 63Sn∕37Pb
,” Int. J. Fatigue
0142-1123, 24
(6
), pp. 671
–683
.8.
Knecht
, S.
, and Fox
, L. R.
, 1990, “Constitutive Relation and Creep-Fatigue Life Model for Eutectic Tin-Lead Solder
,” IEEE Trans. Compon., Hybrids, Manuf. Technol.
0148-6411, 13
(2
), pp. 424
–433
.9.
Kuo
, C.- W.G.
, Sastry
, Shankar
, M. L.
, and Jerina
, Kenneth L.
, 1994, “Creep-Fatigue Interactions in Eutectic Tin-Lead Solder Alloys
,” ASTM STP 1153, pp. 22
–41
.10.
Mathew
, M. D.
, Movva
, S.
, and Murty
, K. L.
, 2000, “Deformation Mechanisms in Tin and Tin-Based Electronic Solder Alloys
,” Key Eng. Mater.
1013-9826, 171/174
, pp. 655
–662
.11.
Jod
, D. K.
, Yu
, J.
, and Shin
, S. W.
, 2003, “Creep Rupture of Lead-Free Sn-3.5Ag-Cu Solders
,” J. Electron. Mater.
0361-5235, 32
(6
), pp. 541
–547
.12.
Kanchanomai
, C.
, Miyashita
, Y.
, and Mutoh
, Y.
, 2002, “Low-Cycle Fatigue Behavior and Mechanisms of a Lead-Free Solder 96.5Sn∕3.5Ag
,” J. Electron. Mater.
0361-5235, 31
(2
), pp. 142
–151
.13.
Kanchanomai
, C.
, Miyashita
, Y.
, and Mutoh
, Y.
, 2002, “Low-Cycle Fatigue Behavior of Sn-Ag, Sn-Ag-Cu and Sn-Ag-Cu-Bi Lead-Free Solders
,” J. Electron. Mater.
0361-5235, 31
(5
), pp. 456
–465
.14.
Coffin
, L. F.
Jr., 1973, “Fatigue at High Temperature
,” ASTM STP 520, pp. 5
–43
.15.
Polhemus
, J. F.
, Spaeth
, C. E.
, and Vogel
, W. H.
, 1973, “Ductility Exhaustion Model for Prediction of Thermal Fatigue and Creep Interaction
,” ASTM STP 520, pp. 625
–636
.16.
Manson
, S. S.
, 1973, “A Challenge to Unify Treatment of High Temperature Fatigue–A Partisan Proposal Based on Strain Range Partitioning in Fatigue at Elevated Temperature
,” ASTM STP 520, pp. 744
–775
.17.
Sakane
, M.
, Shiratsuchi
, T. M.
, Tsukada
, Y.
, and Nishimura
, H.
, 2002, “Creep-Fatigue Damage Model for Solders
,” Proceedings of the Eighth International Fatigue Congress
, FATIGUE 2002
, Stockholm
, pp. 3117
–3124
.18.
JSMS Committee on High Temperature Strength of Materials, 2000, “
Low Cycle Fatigue Standard for Solder Testing
,” Japan Society of Material Science, Japan.19.
Yamamoto
, T.
, Sakane
, M.
, Ohnami
, and Yamada
, T.
, 1995, Multiaxial Low Cycle Fatigue of 63Sn-37Pb Solder
,” J. Soc. Mater. Sci. Jpn.
0514-5163, 44
(503
), pp. 1080
–1085
.20.
JSMS Committee on High Temperature Strength of Materials, 2001, “
Factual Database on Tensile and Low Cycles Fatigue Properties of Sn-37Pb and Sn-3.5Ag Solders
,” The Japan Society of Materials Science, Japan.21.
Shiratsuchi
, T.
, Sakane
, M.
, Tsukada
, Y.
, and Nishimura
, H.
, 2001, “Life Evaluation of 63Sn-37Pb Solder under Multiaxial Creep-Fatigue
,” Proceedings of the 76th Annual General Meeting
, The Japan Society of Mechanical Engineers Kansai Branch
, Japan
.22.
Takada
, A.
, Sakane
, M.
, Tsukada
, Y.
, and Nishimura
, H.
, 2000, “Creep and Creep Rupture Property of Sn-3.5Ag Solder
,” Proceedings of the 38th Symposium on Strength of Materials at High Temperatures
, The Japan Society of Materials Science
, Japan
, pp. 79
–83
.Copyright © 2006
by American Society of Mechanical Engineers
You do not currently have access to this content.