This paper studies the creep-fatigue life evaluation of Sn-3.5Ag solder under push-pull loading using fast-fast, fast-slow, slow-fast, slow-slow, and strain-hold strain waves. Extensive creep-fatigue data were generated using these strain waves and the applicability of four conventional creep-fatigue damage rules, the linear damage rule, the frequency modified fatigue life, the ductility exhaustion model, and the strain range partitioning method, was examined. No conventional damage rules evaluated creep-fatigue lives accurately. Only the grain boundary sliding model, developed recently for solders, predicted creep-fatigue lives with a small scatter.

1.
Frear
,
D. R.
, and
Kinsman
,
K. R.
, 1991, Solder Mechanics, The Mineral, Metals & Materials Society, Warrendale, Pennsylvania.
2.
Ju
,
S.-H.
,
Sandor
,
B.
, and
Plesha
,
M. E.
, 1996, “
Creep Rupture Investigation of 63Sn-37Pb Solder by Experiments and Damage Mechanics
,”
J. Test. Eval.
0090-3973,
24
(
6
), pp.
411
418
.
3.
Stephens
,
J. J.
, and
Frear
,
D. R.
, 1999, “
Time-Dependent Deformation Behavior of Near-Eutectic 60Sn-40Pb Solder
,”
Metall. Mater. Trans. A
1073-5623,
30A
(
5
), pp.
1301
1313
.
4.
Ohguhchi
,
K.
, and
Sasaki
,
K.
, 2001, “
Description of Temperature Dependence and Creep Deformation of 60Sn-40Pb Solder Alloys
,”
Jpn. Soc. Mech. Eng. Int. J. A
,
44
(
1
), pp.
82
88
.
5.
Kitano
,
M.
,
Shimizu
,
T.
,
Kumazawa
,
T.
, and
Ito
,
Y.
, 1987, “
Statistical Fatigue Life Estimation: The Influence of Temperature and Composition on Low-Cycle Fatigue of Tin-Lead Solders
,”
Current Japan Material Research
,
2
, pp.
235
250
.
6.
Solomon
,
H. D.
, 1991, “
Low Cycle Fatigue of Sn96 Solder with Reference to Eutectic Solder and a High Pb Solder
”,
ASME J. Electron. Packag.
1043-7398,
113
(
2
), pp.
102
108
.
7.
Kanchanomai
,
C.
,
Miyashita
,
Y.
, and
Mutoh
,
Y.
, 2002, “
Low Cycle Fatigue Behavior and Mechanisms of a Eutectic Sn-Pb Solder 63Sn∕37Pb
,”
Int. J. Fatigue
0142-1123,
24
(
6
), pp.
671
683
.
8.
Knecht
,
S.
, and
Fox
,
L. R.
, 1990, “
Constitutive Relation and Creep-Fatigue Life Model for Eutectic Tin-Lead Solder
,”
IEEE Trans. Compon., Hybrids, Manuf. Technol.
0148-6411,
13
(
2
), pp.
424
433
.
9.
Kuo
,
C.- W.G.
,
Sastry
,
Shankar
,
M. L.
, and
Jerina
,
Kenneth L.
, 1994, “
Creep-Fatigue Interactions in Eutectic Tin-Lead Solder Alloys
,” ASTM STP 1153, pp.
22
41
.
10.
Mathew
,
M. D.
,
Movva
,
S.
, and
Murty
,
K. L.
, 2000, “
Deformation Mechanisms in Tin and Tin-Based Electronic Solder Alloys
,”
Key Eng. Mater.
1013-9826,
171/174
, pp.
655
662
.
11.
Jod
,
D. K.
,
Yu
,
J.
, and
Shin
,
S. W.
, 2003, “
Creep Rupture of Lead-Free Sn-3.5Ag-Cu Solders
,”
J. Electron. Mater.
0361-5235,
32
(
6
), pp.
541
547
.
12.
Kanchanomai
,
C.
,
Miyashita
,
Y.
, and
Mutoh
,
Y.
, 2002, “
Low-Cycle Fatigue Behavior and Mechanisms of a Lead-Free Solder 96.5Sn∕3.5Ag
,”
J. Electron. Mater.
0361-5235,
31
(
2
), pp.
142
151
.
13.
Kanchanomai
,
C.
,
Miyashita
,
Y.
, and
Mutoh
,
Y.
, 2002, “
Low-Cycle Fatigue Behavior of Sn-Ag, Sn-Ag-Cu and Sn-Ag-Cu-Bi Lead-Free Solders
,”
J. Electron. Mater.
0361-5235,
31
(
5
), pp.
456
465
.
14.
Coffin
,
L. F.
Jr.
, 1973, “
Fatigue at High Temperature
,” ASTM STP 520, pp.
5
43
.
15.
Polhemus
,
J. F.
,
Spaeth
,
C. E.
, and
Vogel
,
W. H.
, 1973, “
Ductility Exhaustion Model for Prediction of Thermal Fatigue and Creep Interaction
,” ASTM STP 520, pp.
625
636
.
16.
Manson
,
S. S.
, 1973, “
A Challenge to Unify Treatment of High Temperature Fatigue–A Partisan Proposal Based on Strain Range Partitioning in Fatigue at Elevated Temperature
,” ASTM STP 520, pp.
744
775
.
17.
Sakane
,
M.
,
Shiratsuchi
,
T. M.
,
Tsukada
,
Y.
, and
Nishimura
,
H.
, 2002, “
Creep-Fatigue Damage Model for Solders
,”
Proceedings of the Eighth International Fatigue Congress
,
FATIGUE 2002
,
Stockholm
, pp.
3117
3124
.
18.
JSMS Committee on High Temperature Strength of Materials, 2000, “
Low Cycle Fatigue Standard for Solder Testing
,” Japan Society of Material Science, Japan.
19.
Yamamoto
,
T.
,
Sakane
,
M.
,
Ohnami
, and
Yamada
,
T.
, 1995,
Multiaxial Low Cycle Fatigue of 63Sn-37Pb Solder
,”
J. Soc. Mater. Sci. Jpn.
0514-5163,
44
(
503
), pp.
1080
1085
.
20.
JSMS Committee on High Temperature Strength of Materials, 2001, “
Factual Database on Tensile and Low Cycles Fatigue Properties of Sn-37Pb and Sn-3.5Ag Solders
,” The Japan Society of Materials Science, Japan.
21.
Shiratsuchi
,
T.
,
Sakane
,
M.
,
Tsukada
,
Y.
, and
Nishimura
,
H.
, 2001, “
Life Evaluation of 63Sn-37Pb Solder under Multiaxial Creep-Fatigue
,”
Proceedings of the 76th Annual General Meeting
,
The Japan Society of Mechanical Engineers Kansai Branch
,
Japan
.
22.
Takada
,
A.
,
Sakane
,
M.
,
Tsukada
,
Y.
, and
Nishimura
,
H.
, 2000, “
Creep and Creep Rupture Property of Sn-3.5Ag Solder
,”
Proceedings of the 38th Symposium on Strength of Materials at High Temperatures
,
The Japan Society of Materials Science
,
Japan
, pp.
79
83
.
You do not currently have access to this content.