In this paper, the scale invariance approach from micro- to macro-plasticity by Aifantis (1995, “From Micro- to Macro-plasticity: The Scale Invariance Approach,” ASME J. Eng. Mater., 117, pp. 352–355) and Ning and Aifantis (1996, “Anisotropic Yield and Plastic Flow of Polycristalline Solids,” Int. J. Plasticity, 12, pp. 1221–1240) is investigated within Rice’s normality structure (1971, “Inelastic Constitutive Relations for Solids: An Integral Variable Theory and its Application to Metal Plasticity,” J. Mech. Phys. Solids, 19, pp. 433–455; 1975, “Continuum Mechanics and Thermodynamics of Plasticity in Relation to Microscale Deformation Mechanisms,” Constitutive Equations in Plasticity, A. S. Argon, ed., MIT Press, Cambridge, MA, pp. 23–79). The normality structure provides a minimal framework of multiscale thermodynamics, and the dissipation equivalence between the microscale and macroscale is ensured by a variational equation which can be further formulated into principle of maximum equivalent dissipation. It is revealed in this paper that within the framework of normality structure, the so-called hypothesis of generalized scale invariance holds for the kinetic rate laws, flow rules, and orthogonality conditions in the sense of Aifantis (1995, “From Micro- to Macro-plasticity: The Scale Invariance Approach”). Stemming from Rice’s kinetic rate laws, the generalized scale invariance reflects the inherent self-consistent character of the normality structure. If the plastic work rate is assumed to be equal to the intrinsic dissipation rate, the kinematic hardening plasticity as a demonstration of the scale invariance approach by Aifantis (1995, “From Micro- to Macro-plasticity: The Scale Invariance Approach”), can be well accommodated within the framework of normality structure. Therefore, the scale invariance approach is justified from a multiscale thermodynamic viewpoint. It is further shown that the maximization procedure in this approach just corresponds to the principle of maximum equivalent dissipation.

1.
Aifantis
,
E. C.
, 1995, “
From Micro- to Macro-Plasticity: The Scale Invariance Approach
,”
ASME J. Eng. Mater. Technol.
0094-4289,
117
, pp.
352
355
.
2.
Ning
,
J.
, and
Aifantis
,
E. C.
, 1996, “
Anisotropic Yield and Plastic Flow of Polycristalline Solids
,”
Int. J. Plast.
0749-6419,
12
pp.
1221
1240
.
3.
Rice
,
J. R.
, 1971, “
Inelastic Constitutive Relations for Solids: An Integral Variable Theory and its Application to Metal Plasticity
,”
J. Mech. Phys. Solids
0022-5096,
19
, pp.
433
455
.
4.
Rice
,
J. R.
, 1975, “
Continuum Mechanics and Thermodynamics of Plasticity in Relation to Microscale Deformation Mechanisms
,”
Constitutive Equations in Plasticity
,
A. S.
Argon
, ed.,
MIT Press
, Cambridge, MA, pp.
23
79
.
5.
Ziegler
,
H.
, 1977,
An Introduction to Thermomechanics
,
North-Holland
, Amsterdam.
6.
McDowell
,
D. L.
, 2000, “
Modeling and Experiments in Plasticity
,”
Int. J. Solids Struct.
0020-7683,
37
, pp.
293
309
.
7.
Sih
,
G. C.
, 2004, “
Current Approaches to Material Damage at Different Size and Time Scales—Foreword
,”
Theor. Appl. Fract. Mech.
0167-8442,
41
, pp.
XIII
XVI
.
8.
Swoboda
,
G.
, and
Yang
,
Q.
, 1999, “
An Energy-Based Damage Model of Geomaterials—I. Formulation and Numerical Results
,”
Int. J. Solids Struct.
0020-7683,
36
, pp.
1719
1734
.
9.
Swoboda
,
G.
, and
Yang
,
Q.
, 1999, “
An Energy-Based Damage Model of Geomaterials—II. Deduction of Damage Evolution Laws
,”
Int. J. Solids Struct.
0020-7683,
36
, pp.
1735
1755
.
10.
Yang
,
Q.
,
Zhou
,
W. Y.
, and
Swoboda
,
G.
, 1999, “
Micromechanical Identification of Anisotropic Damage Evolution Laws
,”
Int. J. Fract.
0376-9429,
68
, pp.
740
750
.
11.
Yang
,
Q.
,
Chen
,
X.
, and
Zhou
,
W. Y.
, 2005, “
On Microscopic Thermodynamic Mechanisms of Damage Evolution Laws
,”
Int. J. Damage Mech.
1056-7895,
14
, pp.
261
293
.
12.
Onsager
,
L.
, 1931, “
Reciprocal Relations in Irreversible Processes, I, II
,”
Phys. Rev.
0031-899X,
37
, pp.
405
-
406
;
Onsager
,
L.
, 1931, “
Reciprocal Relations in Irreversible Processes, I, II
,”
Phys. Rev.
0031-899X,
38
, pp.
2265
2279
.
13.
De Groot
,
S. R.
, and
Mazur
,
P.
, 1962,
Non-Equlibrium Thermodynamics
,
North-Holland
, Amsterdam.
14.
Ziegler
,
H.
, and
Wehrli
,
C.
, 1987, “
The Derivation of Constitutive Relations from the Free-Energy and the Dissipation Function
,”
Adv. Appl. Mech.
0065-2156,
25
, pp.
183
238
.
15.
Ziegler
,
H.
, and
Wehrli
,
C.
, 1987, “
On a Principle of Maximal Rate of Entropy Production
,”
J. Non-Equil. Thermodyn.
0304-0204,
12
, pp.
229
243
.
16.
Edelen
,
D. G. B.
, 1972, “
A Nonlinear Onsager Theory of Irreversibility
,”
Int. J. Eng. Sci.
0020-7225,
10
, pp.
481
490
.
17.
Yang
,
Q.
,
Tham
,
L. G.
, and
Swoboda
,
G.
, 2005, “
Normality Structures with Homogeneous Kinetic Rate Laws
,”
ASME J. Appl. Mech.
0021-8936,
72
, pp.
322
329
.
18.
Yang
,
Q.
,
Chen
,
X.
, and
Zhou
,
W. Y.
, 2005, “
Microscopic Thermodynamic Basis of Normality Structure of Inelastic Constitutive Relations
,”
Mech. Res. Commun.
0093-6413,
32
, pp.
590
596
.
19.
Edelen
,
D. G. B.
, 1973, “
Asymptotic Stability, Onsager Fluxes and Reaction Kinetics
,”
Int. J. Eng. Sci.
0020-7225,
11
, pp.
819
839
.
20.
Yang
,
Q.
,
Chen
,
X.
, and
Zhou
,
W. Y.
, 2005, “
Relationship Between Normality Structure and Orthogonality Condition
,”
Mech. Res. Commun.
0093-6413,
32
, pp.
582
589
.
21.
Yang
,
Q.
,
Chen
,
X.
, and
Zhou
,
W. Y.
, 2005, “
Thermodynamic Relationship Between Creep Crack Growth and Creep Deformation
,”
J. Non-Equil. Thermodyn.
0304-0204,
30
, pp.
81
94
.
22.
Lubliner
,
H.
, 1990,
Plasticity Theory
,
Macmillan Publishing Company
, New York.
23.
Qin
,
Q.
, and
Bassani
,
J. L.
, 1992, “
Non-Schmid Yield Behaviour in Single Crystals
,”
J. Mech. Phys. Solids
0022-5096,
40
, pp.
813
833
.
24.
Krajcinovic
,
D.
, 1996,
Damage Mechanics
,
Elsevier
, Amsterdam.
25.
Krajcinovic
,
D.
,
Basista
,
M.
, and
Sumarac
,
D.
, 1991, “
Micromechanically Inspired Phenomenological Damage Model
,”
ASME J. Appl. Mech.
0021-8936,
58
, pp.
305
316
.
You do not currently have access to this content.