Abstract

A thermodynamic framework is presented that can be used to describe the solidification of polymer melts, both the solidification of atactic polymers into an amorphous elastic solid and the crystallization of other types of polymer melts to semi-crystalline elastic solids. This framework fits into a general structure that has been developed to describe the response of a large class of dissipative bodies. The framework takes into account the fact that the natural configuration of the viscoelastic melt and the solid evolve during the process and that the symmetries of these natural configurations also evolve. Different choices are made as to how the material stores energy, produces entropy, and for its latent heat, latent energy, etc., that lead to models for different classes of materials. The evolution of the natural configuration is dictated by the manner in which entropy is produced, how the energy is stored etc., and it is assumed that the constitutive choices are such that the rate entropy production is maximized, from an allowable class of constitutive models. Such an assumption also determines the crystallization kinetics, i.e., provides equations such as the Avrami equation. Using the framework, a model is developed within which the problem of fiber spinning is studied and we find that the model is able to predict observed experimental results quite well.

1.
Landau
,
L. D.
, 1967, “
On the Theory of Phase Transitions
,”
Collected Papers of L. D. Landau
,
D.
ter Haar
, ed.,
Gordon and Breach
, New York, pp.
193
216
.
2.
Pippard
,
A. B.
, 1957,
Elements of Classical Thermodynamics for Advanced Students of Physics
,
Cambridge University Press
, Cambridge, England.
3.
Eckart
,
C.
, 1948, “
The Thermodynamics of Irreversible Processes. IV. The Theory of Elasticity and Anelasticity
,”
Phys. Rev.
0031-899X,
73
, pp.
373
382
.
4.
Rajagopal
,
K. R.
, and
Wineman
,
A. S.
, 1992, “
A Constitutive Equation for Nonlinear Solids Which Undergo Deformation Induced Microstructural Changes
,”
Int. J. Plast.
0749-6419,
8
, pp.
385
395
.
5.
Wineman
,
A. S.
, and
Rajagopal
,
K. R.
, 1990, “
On a Constitutive Theory for Materials Undergoing Microstructural Changes
,”
Arch. Mech.
0373-2029,
42
, pp.
53
75
.
6.
Huntley
,
H. E.
,
Wineman
,
A. S.
, and
Rajagopal
,
K. R.
, 1996, “
Chemorheological Relaxation, Residual Stress, and Permanent Set Arising in Radial Deformation of Elastomeric Hollow Spheres
,”
Math. Mech. Solids
1081-2865,
1
, pp.
267
299
.
7.
Huntley
,
H. E.
,
Wineman
,
A. S.
, and
Rajagopal
,
K. R.
, 1997, “
Stress Softening, Strain Localization and Permanent Set in the Circumferential Shear of an Incompressible Elastomeric Cylinder
,”
IMA J. Appl. Math.
0272-4960,
59
, pp.
309
338
.
8.
Rajagopal
,
K. R.
, and
Srinivasa
,
A. R.
, 1999, “
On the Thermomechanics of Shape Memory Wires
,”
ZAMP
0044-2275,
50
, pp.
459
496
.
9.
Rajagopal
,
K. R.
, and
Srinivasa
,
A. R.
, 2004, “
On the Thermomechanical Restrictions of Continua
,”
Proc. R. Soc. London, Ser. A
1364-5021,
460
, pp.
631
651
.
10.
Rajagopal
,
K. R.
, and
Srinivasa
,
A. R.
, 1998, “
Mechanics of the Inelastic Behavior of Materials. Part I: Theoretical Underpinnings
,”
Int. J. Plast.
0749-6419,
118
, pp.
945
967
.
11.
Rajagopal
,
K. R.
, and
Srinivasa
,
A. R.
, 1998, “
Mechanics of the Inelastic Behavior of Materials. Part II: Inelastic Response
,”
Int. J. Plast.
0749-6419,
14
, pp.
969
995
.
12.
Rajagopal
,
K. R.
, and
Srinivasa
,
A. R.
, 1995, “
On the Inelastic Behavior of Solids. Part I: Twinning
,”
Int. J. Plast.
0749-6419,
11
, pp.
653
678
.
13.
Rajagopal
,
K. R.
, and
Srinivasa
,
A. R.
, 1997, “
Inelastic Behavior of Materials. II: Energetics Associated With Discontinuous Twinning
,”
Int. J. Plast.
0749-6419,
13
, pp.
1
35
.
14.
Rajagopal
,
K. R.
, and
Srinivasa
,
A. R.
, 2000, “
A Thermodynamic Framework for Rate Type Fluid Models
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
88
, pp.
207
227
.
15.
Srinivasa
,
A. R.
, 2000, “
Flow Characteristics of a “Multiconfigurational,” Shear Thinning Viscoelastic Fluid With Particular Reference to the Orthogonal Rheometer
,”
Theor. Comput. Fluid Dyn.
0935-4964,
13
, pp.
305
325
.
16.
Krishnan
,
J. M.
, and
Rajagopal
,
K. R.
, 2004, “
Thermodynamic Framework for the Constitutive Modeling of Asphalt Concrete: Theory and Applications
,”
J. Mater. Civ. Eng.
0899-1561,
16
, pp.
155
166
.
17.
Krishnan
,
J. M.
, and
Rajagopal
,
K. R.
, 2004, “
Triaxial Testing and Stress Relaxation of Asphalt Concrete
,”
Mech. Mater.
0167-6636,
36
, pp.
849
864
.
18.
Rao
,
I. J.
, and
Rajagopal
,
K. R.
, 2001, “
A Thermomechanical Framework for the Crystallization of Polymers
,”
ZAMP
0044-2275,
53
, pp.
365
406
.
19.
Kannan
,
K.
,
Rao
,
I. J.
, and
Rajagopal
,
K. R.
, 2002, “
A Thermomechanical Framework for the Glass Transition Phenomenon in Certain Polymers and its Application to Fiber Spinning
,”
J. Rheol.
0148-6055,
46
, pp.
977
999
.
20.
Prasad
,
S. C.
,
Rao
,
I. J.
, and
Rajagopal
,
K. R.
, 2005, “
A Continuum Model for the Creep of Single Crystal Nickel-Base Superalloys
,”
Acta Mater.
1359-6454,
53
, pp.
669
679
.
21.
Kannan
,
K.
, and
Rajagopal
,
K. R.
, 2005, “
Simulation of Fiber Spinning Including Flow Induced Crystallization
,”
J. Rheol.
0148-6055,
49
, pp.
683
703
.
22.
Fisher
,
R. J.
, and
Denn
,
M. M.
, 1977, “
Mechanics of Non-Isothermal Polymer Melt Spinning
,”
AIChE J.
0001-1541,
23
, pp.
23
28
.
23.
Gagon
,
D. K.
, and
Denn
,
M. M.
, 1981, “
Computer Simulation of Steady Polymer Melt Spinning
,”
Polym. Eng. Sci.
0032-3888,
21
, pp.
844
853
.
24.
Kase
,
S.
, and
Matsuo
,
T.
, 1967, “
Studies on Melt Spinning II. Steady-State and Transient Solutions of Fundamental Equations Compared With Experimental Results
,”
J. Appl. Polym. Sci.
0021-8995,
11
, pp.
251
287
.
25.
Ottone
,
M. L.
, and
Deiber
,
J. A.
, 2000, “
Modeling the Melt Spinning of Polyethylene Terephthalate
,”
J. Elastomers Plast.
0095-2443,
32
,
119
139
.
26.
Doufas
,
A. K.
,
McHugh
,
A. J.
, and
Miller
,
C.
, 2000, “
Simulation of Melt Spinning Including Flow-Induced Crystallization. Part I: Model Development and Predictions
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
92
, pp.
27
66
.
27.
Doufas
,
A. K.
,
McHugh
,
A. J.
,
Miller
,
C.
, and
Immaneni
,
A.
, 2000, “
Simulation of Melt Spinning Including Flow-Induced Crystallization. Part II: Quantitative Comparisons With Industrial Spinline Data
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
92
, pp.
81
103
.
28.
Oldroyd
,
J. G.
, 1950, “
On the Formulation of the Rheological Equation of State
,”
Proc. R. Soc. London, Ser. A
1364-5021,
A200
, pp.
523
591
.
29.
Green
,
A. E.
, and
Naghdi
,
P. M.
, 1977, “
On Thermodynamics and Nature of Second Law
,”
Proc. R. Soc. London, Ser. A
1364-5021,
357
, pp.
253
270
.
30.
Pearson
,
J. R. A.
, 1985,
Mechanics of Polymer Processing
,
Elsevier
, New York.
31.
George
,
H. H.
, 1982, “
Model of Steady-State Melt Spinning at Intermediate Take-Up Speeds
,”
Polym. Eng. Sci.
0032-3888,
22
, pp.
292
299
.
You do not currently have access to this content.