This paper presents a model for predicting the damage-induced mechanical response of particle-reinforced composites. The modeling includes the effects of matrix viscoelasticity and fracture, both within the matrix and along the boundaries between matrix and rigid particles. Because of these inhomogeneities, the analysis is performed using the finite element method. Interface fracture is predicted by using a nonlinear viscoelastic cohesive zone model. Rate-dependent viscoelastic behavior of the matrix material and cohesive zone is incorporated by utilizing a numerical time-incrementalized algorithm. The proposed modeling approach can be successfully employed for numerous types of solid media that exhibit matrix viscoelasticity and complex damage evolution characteristics within the matrix as well as along the matrix-particle boundaries. Computational results are given for various asphalt concrete mixtures. Simulation results demonstrate that each model parameter and design variable significantly influences the mechanical behavior of the mixture.

1.
Park
,
S. W.
,
Kim
,
Y. R.
, and
Schapery
,
R. A.
, 1996, “
A Viscoelastic Continuum Damage Model and Its Application to Uniaxial Behavior of Asphalt Concrete
,”
Mech. Mater.
0167-6636,
24
, pp.
241
255
.
2.
Lee
,
H. J.
,
Daniel
,
J. S.
, and
Kim
,
Y. R.
, 2000, “
Continuum Damage Mechanics-Based Fatigue Model of Asphalt Concrete
,”
J. Mater. Civ. Eng.
0899-1561,
12
(
2
), pp.
105
112
.
3.
Schapery
,
R. A.
, 1984, “
Correspondence Principles and a Generalized J-Integral for Large Deformation and Fracture Analysis of Viscoelastic Media
,”
Int. J. Fract.
0376-9429,
25
, pp.
195
223
.
4.
Griffith
,
A. A.
, 1920, “
The Phenomena of Rupture and Flow in Solids
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
A221
, pp.
163
197
.
5.
Dugdale
,
D. S.
, 1960, “
Yielding of Steel Sheets Containing Slits
,”
J. Mech. Phys. Solids
0022-5096,
8
, pp.
100
104
.
6.
Barenblatt
,
G. I.
, 1962, “
The Mathematical Theory of Equilibrium Cracks in Brittle Fracture
,”
Adv. Appl. Mech.
0065-2156,
7
, pp.
55
129
.
7.
Needleman
,
A.
, 1987, “
A Continuum Model for Void Nucleation by Inclusion Debonding
,”
ASME J. Appl. Mech.
0021-8936,
54
, pp.
525
531
.
8.
Tvergaard
,
V.
, 1990, “
Effect of Fiber Debonding in a Whisker-Reinforced Metal
,”
Mater. Sci. Eng., A
0921-5093,
A125
(
2
) pp.
203
213
.
9.
Schapery
,
R. A.
, 1975, “
A Theory of Crack Initiation and Growth in Viscoelastic Media: Part I
,”
Int. J. Fract.
0376-9429,
11
(
1
), pp.
141
159
.
10.
Schapery
,
R. A.
, 1975, “
A Theory of Crack Initiation and Growth in Viscoelastic Media: Part II
,”
Int. J. Fract.
0376-9429,
11
(
3
), pp.
369
387
.
11.
Schapery
,
R. A.
, 1975, “
A Theory of Crack Initiation and Growth in Viscoelastic Media: Part III
,”
Int. J. Fract.
0376-9429,
11
(
4
), pp.
549
562
.
12.
Gurtin
,
M. E.
, 1979, “
Thermodynamics and the Griffith Criterion for Brittle Fracture
,”
Int. J. Solids Struct.
0020-7683,
15
, pp.
553
560
.
13.
Ungsuwarungsri
,
T.
, and
Knauss
,
W. G.
, 1988, “
A Nonlinear Analysis of an Equilibrium Craze: Part I: Problem Formulation and Solution
,”
ASME J. Appl. Mech.
0021-8936,
55
, pp.
44
51
.
14.
Knauss
,
W. G.
, 1993, “
Time Dependent Fracture and Cohesive Zones
,”
ASME J. Eng. Mater. Technol.
0094-4289,
115
, pp.
263
267
.
15.
Costanzo
,
F.
, and
Allen
,
D. H.
, 1993, “
A Continuum Mechanics Approach to Some Problems in Subcritical Crack Propagation
,”
Int. J. Fract.
0376-9429,
63
, pp.
27
57
.
16.
Allen
,
D. H.
, and
Searcy
,
C. R.
, 2000, “
Numerical Aspects of a Micromechanical Model of a Cohesive Zone
,”
J. Reinf. Plast. Compos.
0731-6844,
19
(
3
), pp.
240
248
.
17.
Allen
,
D. H.
, and
Searcy
,
C. R.
, 2001, “
A Micromechanical Model for a Viscoelastic Cohesive Zone
,”
Int. J. Fract.
0376-9429,
107
, pp.
159
176
.
18.
Allen
,
D. H.
, and
Searcy
,
C. R.
, 2001, “
A Micromechanically Based Model for Predicting Dynamic Damage Evolution in Ductile Polymers
,”
Mech. Mater.
0167-6636,
33
, pp.
177
184
.
19.
Yoon
,
C.
, and
Allen
,
D. H.
, 1999, “
Damage Dependent Constitutive Behavior and Energy Release Rate for a Cohesive Zone in a Thermoviscoelastic Solid
,”
Int. J. Fract.
0376-9429,
96
, pp.
55
74
.
20.
Seidel
,
G. D.
, 2002, “
A Model for Predicting the Evolution of Damage in the Plastic Bonded Explosive LX17
,” Master’s thesis, Texas A&M University, College Station.
21.
Costanzo
,
F.
, and
Walton
,
J. R.
, 1997, “
A Study of Dynamic Crack Growth in Elastic Materials Using a Cohesive Zone Model
,”
Int. J. Eng. Sci.
0020-7225,
35
, pp.
1085
1114
.
22.
Lagoudas
,
D. C.
,
Ma
,
X.
, and
Xu
,
S.
, 1998, “
Surface Damage Modeling of Oxidized Metal Matrix Composite Laminates under Axial and Transverse Tension
,”
Int. J. Damage Mech.
1056-7895,
7
, pp.
209
237
.
23.
Williams
,
J. J.
, 2001, “
Two Experiments for Measuring Specific Viscoelstic Cohesive Zone Parameters
,” Master’s thesis, Texas A&M University, College Station.
24.
Zocher
,
M. A.
,
Allen
,
D. H.
, and
Groves
,
S. E.
, 1997, “
A Three DimensionalFinite Element Formulation for Thermoviscoelastic Orthotropic Media
,”
Int. J. Numer. Methods Eng.
0029-5981,
40
, pp.
2267
2288
.
25.
Reddy
,
J. N.
, 1993,
An Introduction to the Finite Element Method
,
2nd Edition
,
McGraw-Hill
, New York.
26.
Allen
,
D. H.
,
Jones
,
R. H.
, and
Boyd
,
J. G.
, 1994, “
Micromechanical Analysis of a Continuous Fiber Metal Matrix Composite Including the Effects of Matrix Viscoplasticity and Evolving Damage
,”
J. Mech. Phys. Solids
0022-5096,
42
(
3
), pp.
505
529
.
27.
Kim
,
Y.
,
Allen
,
D. H.
, and
Little
,
D. N.
, 2005, “
Damage-induced Modeling of Asphalt Mixtures Through Computational Micromechanics and Cohesive Zone Fracture
,”
J. Mater. Civ. Eng.
0899-1561, (in press).
28.
Zhou
,
F. P.
,
Lydon
,
F. D.
, and
Barr
,
B. I. G.
, 1995, “
Effect of Coarse Aggregate on Elastic Modulus and Compressive Strength of High Performance Concrete
,”
Cem. Concr. Res.
0008-8846,
20
, pp.
177
186
.
29.
Schapery
,
R. A.
, 1974, “
Viscoelastic Behavior and Analysis of Composite Materials
,”
Mech. Compos. Mater.
0191-5665,
2
, pp.
85
168
.
30.
Kim
,
Y.
,
Little
,
D. N.
, and
Lytton
,
R. L.
, 2003, “
Fatigue and Healing Characterization of Asphalt Mixtures
,”
J. Mater. Civ. Eng.
0899-1561,
15
(
1
), pp.
75
83
.
31.
Si
,
Z.
, 2001, “
Characterization of Microdamage and Healing of Asphalt Concrete Mixtures
,” Ph.D. thesis, Texas A&M University, College Station, TX.
You do not currently have access to this content.