Molecular dynamics simulations are carried out to analyze the structure and mechanical behavior of Cu nanowires with lateral dimensions of 1.45–2.89 nm. The calculations simulate the formation of nanowires through a “top-down” fabrication process by “slicing” square columns of atoms from single-crystalline bulk Cu along the [001], [010], and [100] directions and by allowing them to undergo controlled relaxation which involves the reorientation of the initial configuration with a 001 axis and {001} surfaces into a new configuration with a 110 axis and {111} lateral surfaces. The propagation of twin planes is primarily responsible for the lattice rotation. The transformed structure is the same as what has been observed experimentally in Cu nanowires. A pseudoelastic behavior driven by the high surface-to-volume ratio and surface stress at the nanoscale is observed for the transformed wires. Specifically, the relaxed wires undergo a reverse transformation to recover the configuration it possessed as part of the bulk crystal prior to relaxation when tensile loading with sufficient magnitude is applied. The reverse transformation progresses with the propagation of a single twin boundary in reverse to that observed during relaxation. This process has the diffusionless nature and the invariant-plane strain of a martensitic transformation and is similar to those in shape memory alloys in phenomenology. The reversibility of the relaxation and loading processes endows the nanowires with the ability for pseudoelastic elongations of up to 41% in reversible axial strain which is well beyond the yield strain of the approximately 0.25% of bulk Cu and the recoverable strains on the order of 8% of most bulk shape memory materials. The existence of the pseudoelasticity observed in the single-crystalline, metallic nanowires here is size and temperature dependent. At 300 K, this effect is observed in wires with lateral dimensions equal to or smaller than 1.81×1.81nm. As temperature increases, the critical wire size for observing this effect increases. This temperature dependence gives rise to a novel shape memory effect to Cu nanowires not seen in bulk Cu.

1.
Yakobson
,
B. I.
,
Brabec
,
C. J.
, and
Bernholc
,
J.
, 1996, “
Nanomechanics of Carbon Nanotubes: Instabilities beyond Linear Response
,”
Phys. Rev. Lett.
0031-9007,
76
(
14
), pp.
2511
2514
.
2.
Falvo
,
M. R.
,
Clary
,
G. J.
, II
,
R. M.
T.
,
Chi
,
V.
, Jr
,
F. P.
B.
,
Washburn
,
S.
, and
Superfine
,
R.
, 1997, “
Bending and Buckling of Carbon Nanotubes under Large Strain
,”
Nature (London)
0028-0836
389
, pp.
582
584
.
3.
Bilalbegovic
,
G.
, 2001, “
Multi-Shell Gold Nanowires under Compression
”,
J. Phys.: Condens. Matter
0953-8984,
13
, pp.
11531
11539
.
4.
Gall
,
K.
,
Diao
,
J.
, and
Dunn
,
M. L.
, 2004, “
The Strength of Gold Nanowires
,”
Nano Lett.
1530-6984,
4
(
12
), pp.
2431
2436
.
5.
Diao
,
J.
,
Gall
,
K.
, and
Dunn
,
M. L.
, 2004, “
Yield Strength Asymmetry in Metal Nanowires
,”
Nano Lett.
1530-6984,
4
(
10
), pp.
1863
1867
.
6.
Liu
,
Z.
,
Yang
,
Y.
,
Liang
,
J.
,
Hu
,
Z.
,
Li
,
S.
,
Peng
,
S.
, and
Qian
,
Y.
, 2003, “
Synthesis of Copper Nanowires via a Complex-Surfactant-Assisted Hydrothermal Reduction Process
,”
J. Phys. Chem. B
1089-5647,
107
, pp.
12658
12661
.
7.
Campell
,
S. A.
, 2001,
The Science and Engineering of Microelectronic Fabrication
,
Oxford University Press
, Oxford.
8.
Nalwa
,
H. S.
, 2002,
Nanostructured Materials and Nanotechnology
,
Academic Press
, San Diego, CA.
9.
Kondo
,
Y.
,
Ru
,
Q.
, and
Takayanagi
,
K.
, 1999, “
Thickness Induced Structural Phase Transition of Gold Nanofilm
,”
Phys. Rev. Lett.
0031-9007,
82
(
4
), pp.
751
754
.
10.
Kondo
,
Y.
, and
Takayanagi
,
K.
, 1997, “
Gold Nanobridge Stabilized by Surface Structure
,”
Phys. Rev. Lett.
0031-9007,
79
(
18
), pp.
3455
3458
.
11.
Diao
,
J.
,
Gall
,
K.
, and
Dunn
,
M.
, 2003, “
Surface-Stress-Induced Phase Transformation in Metal Nanowires
,”
Nat. Mater.
1476-1122,
2
, pp.
656
660
.
12.
Liu
,
Z.
, and
Bando
,
Y.
, 2003, “
A Novel Method for Preparing Copper Nanorods and Nanowires
,”
Adv. Mater. (Weinheim, Ger.)
0935-9648,
15
(
3
), pp.
303
305
.
13.
Otsuka
,
K.
, and
Kakeshita
,
T.
, 2002, “
Science and Technology of Shape-Memory Alloys: New Developments
,”
MRS Bull.
0883-7694, Feb. 2002, pp.
91
98
.
14.
Daw
,
M. S.
, and
Baskes
,
M. I.
, 1984, “
Embedded-Atom Method: Derivation and Application to Impurities, Surfaces, and other Defects in Metals
,”
Phys. Rev. B
0163-1829,
29
(
12
), pp.
6443
53
.
15.
Foiles
,
S. M.
,
Baskes
,
M. I.
, and
Daw
,
M. S.
, 1986, “
Embedded-Atom-Method Functions for the fcc Metals Cu, Ag, Ni, Pd, Pt, and Their Alloys
,”
Phys. Rev. B
0163-1829,
33
(
12
), pp.
7983
7991
.
16.
Hove
,
M. A. V.
,
Koestner
,
R. J.
,
Stair
,
P. C.
,
Biberian
,
J. P.
,
Kesmodel
,
L. L.
,
Bartos
,
I.
, and
Somorjai
,
G. A.
, 1981, “
The Surface Reconstructions of the (100) Crystal Faces of Iridium, Platinum and Gold: I. Experimental Observations and Possible Structural Models
,”
Surf. Sci.
0039-6028,
103
, pp.
189
217
.
17.
Binnig
,
G. K.
,
Rohrer
,
H.
,
Gerber
,
C.
, and
Stoll
,
E.
, 1984, “
Real-space Observation of the Reconstruction of Au(100)
,”
Surf. Sci.
0039-6028,
144
, pp.
321
335
.
18.
Diao
,
J.
,
Gall
,
K.
, and
Dunn
,
M. L.
, 2004, “
Surface Stress Driven Reorientation of Gold Nanowires
,”
Phys. Rev. B
0163-1829,
70
(
7
), pp.
75413:1
9
.
19.
Streitz
,
F. H.
,
Cammarata
,
R. C.
, and
Sieradzki
,
K.
, 1994, “
Surface-stress Effects on Elastic Properties: I. Thin Metal Films
,”
Phys. Rev. B
0163-1829,
49
, pp.
10699
10706
.
20.
Leeuwen
,
J. M. J. V.
,
Groeneveld
,
J.
, and
Boer
,
J. D.
, 1959, “
New Method for the Calculation of the Pair Correlation Function. I
,”
Physica (Amsterdam)
0031-8914,
25
, pp.
792
808
.
21.
Kelchner
,
C. L.
,
Plimpton
,
S. J.
, and
Hamilton
,
J. C.
, 1998, “
Dislocation Nucleation and Defect Structure during Surface Indentation
,”
Phys. Rev. B
0163-1829,
58
(
17
), pp.
11085
11088
.
22.
Rodrigues
,
V.
, and
Ugarte
,
D.
, 2003,
Structural Study of Metal Nanowires
,
Kluwer Academic/Plenum Publishers
, New York, pp.
177
209
.
23.
Bhadeshia
,
H. K. D. H.
, 2001,
Worked Examples in the Geometry of Crystals
,
The Institute of Materials
, London.
24.
Trimble
,
T. M.
,
Cammarata
,
R. C.
, and
Sieradzki
,
K.
, 2003, “
The Stability of fcc (111) Metal Surfaces
,”
Surf. Sci.
0039-6028,
531
, pp.
8
20
.
25.
Molares
,
M. E. T.
,
Buschmann
,
V.
,
Dobrev
,
D.
,
Neumann
,
R.
,
Scholz
,
R.
,
Schuchert
,
I. U.
, and
Vetter
,
J.
, 2001, “
Single-Crystalline Copper Nanowires Produced by Electrochemical Deposition in Polymeric Ion Track Membranes
,”
Adv. Mater. (Weinheim, Ger.)
0935-9648,
13
, pp.
62
65
.
26.
Wang
,
J.
,
Tian
,
M.
,
Mallouk
,
T. E.
, and
Chan
,
M. H. W.
, 2004, “
Microtwinning in Template-Synthesized Single-Crystal Metal Nanowires
,”
J. Phys. Chem. B
1089-5647,
108
, pp.
841
845
.
27.
Sauer
,
G.
,
Brehm
,
G.
, and
Schneider
,
S.
, 2002, “
Highly Ordered Monocrystalline Silver Nanowire Arrays
,”
J. Appl. Phys.
0021-8979,
91
(
5
), pp.
3243
3247
.
28.
Fiorentini
,
V.
,
Methfessel
,
M.
, and
Scheffler
,
M.
, 1993, “
Reconstruction Mechanism of fcc Transition Metal (001) Surfaces
,”
Phys. Rev. Lett.
0031-9007,
71
(
7
), pp.
1051
1054
.
29.
Baskes
,
M. I.
, 1992, “
Modified Embedded-Atom Method Potentials for Cubic Materials and Impurities
,”
Phys. Rev. B
0163-1829,
46
, pp.
2727
2742
.
30.
Wang
,
J.
,
Fan
,
Y. L.
,
Gong
,
D. W.
,
Shen
,
S. G.
, and
Fan
,
X. Q.
, 1999, “
Surface Relaxation and Stress of fcc Metals: Cu, Ag, Au, Ni, Pd, Pt, Al and Pb
,”
Modell. Simul. Mater. Sci. Eng.
0965-0393,
7
, pp.
189
206
.
31.
Zhang
,
J. M.
,
Ma
,
F.
, and
Xu
,
K. W.
, 2004, “
Calculations of the Surface Energy of FCC Metals with Modified Embedded-atom Method
,”
Appl. Surf. Sci.
0169-4332,
229
, pp.
34
42
.
32.
Mishin
,
Y.
,
Farkas
,
D.
,
Mehl
,
M. J.
, and
Papaconstantopoulos
,
D. A.
, 1998, “
Interatomic Potentials for Monoatomic Metals from Experimental Data and ab initio Calculations
,”
Phys. Rev. B
0163-1829,
59
(
5
), pp.
3393
3407
.
33.
Nakanishi
,
N.
, 1980, “
Elastic Constants as They Relate to Lattice Properties and Martensite Formation
,”
Prog. Mater. Sci.
0079-6425,
24
, pp.
143
265
.
34.
Barrett
,
C. S.
, 1976, “
Transformations at Low Temperatures
,”
Trans. Jpn. Inst. Met.
0021-4434,
17
(
8
), pp.
465
475
.
35.
Rittner
,
J. D.
, and
Seidman
,
D. N.
, 1996, “
⟨110⟩ Symmetric Tilt Grain-Boundary Structures in fcc Metals with Low Stacking-Fault Energies
,”
Phys. Rev. B
0163-1829,
54
(
10
), pp.
6999
7015
.
36.
Atsuzaki
,
Y. M.
, and
Naito
,
H.
, 2004, “
Macroscopic and Microscopic Constitutive Models of Shape Memory Alloys Based on Phase Interaction Energy Function: A Review
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
15
, pp.
141
155
.
37.
Honma
,
D.
,
Yoshiyuki
,
M.
, and
Igushi
,
N.
1989, “
Micro Robots and Micro Mechanisms Using Shape Memory Alloy
,”
The 3rd Toyota Conference on Integrated Micro-motion Systems, Micro-machining, Control and Applications
, Nissin, Aichi, Japan.
38.
Ikuta
,
K.
,
Tsukamoto
,
M.
, and
Hirose
,
S.
1991, “
Mathematical Model and Experimental Verification of Shape Memory Alloy for Designing Micro Actuator
,”
Proc. of the IEEE on Micro Electromechanical Systems, An Investigation of Microstructures, Sensors, Actuators, Machines, and Robots
, IEEE Robotics & Automation Soc., IEE of Japan and ASME, Nara, Japan, pp.
103
108
.
39.
Gilbertson
,
R. G.
, and
Busch
,
J. D.
, 1996, “
A Survey of Micro-actuator Technologies for Future Spacecraft Missions
,”
J. Br. Interplanet. Soc.
0007-084X,
49
, pp.
129
138
.
40.
Humphrey
,
W.
,
Dalke
,
A.
, and
Schulten
,
K.
, 1996, “
VMD - Visual Molecular Dynamics
,”
J. Mol. Graphics
0263-7855,
14
(
1
), pp.
33
38
.
You do not currently have access to this content.