When two material surfaces are brought into contact, the classical Amonton’s law predicts a monotonically increasing relation between the frictional force and the normal pressure. An abnormal friction law refers to the case where the friction force declines as the normal pressure increases. We investigate the possibility of abnormal tribological behavior for two surfaces coated with aligned multiwalled nanotube rafts. Part I of the investigation is devoted to the case when two contacting nanotube rafts are aligned to each other, while part II is aimed at more general case of arbitrarily oriented nanotube rafts. The analysis in part I is based on the JKR theory of adhesion and linear elasticity for aligned multiwalled carbon nanotube raft configuration. It gives rise of several interesting predictions. First, two surfaces covered by aligned nanotubes can adhere when bringing into a pressureless contact. Second, the aligned multiwalled nanotube rafts exhibit a detachment work that declines with the contacting pressure. Third, in contrast to the Amonton’s law, the frictional force would decline as the normal pressure increases.

1.
Bowden
,
F. P.
, and
Tabor
,
D.
, 1950,
The Friction and Lubrication of Solids
, Oxford, Clarendon.
2.
He
,
G.
,
Muser
,
M. H.
, and
Robbins
,
M. O.
, 1999, “
Adsorbed layers and the origin of static friction
,”
Science
0036-8075,
284
, pp.
1650
1652
.
3.
Hurtado
,
J. A.
, and
Kim
,
K. S.
, 1999, “
Scale effects in friction of single-asperity contacts. I. From concurrent slip to single dislocation-assisted slip
,”
Proc. R. Soc. London, Ser. A
1364-5021,
455
, pp.
3385
3400
.
4.
Hurtado
,
J. A.
, and
Kim
,
K. S.
, 1999, “
Scale effects in friction of single-asperity contacts. II. Multiple-dislocation-cooperated slip
,”
Proc. R. Soc. London, Ser. A
1364-5021,
455
,
3363
3384
.
5.
Bhushan
,
B.
, 1999,
Handbook of Micro/Nano Tribology
,
CRC Series of Mechanics and Materials Science
,
CRC Press
, Boca Raton.
6.
Iijima
,
S.
, 1991, “
Helical microtubules of graphite carbon
,”
Nature (London)
0028-0836,
354
, pp.
56
58
.
7.
Treacy
,
M. M. J.
,
Ebbesen
,
T. W.
, and
Gibson
,
J. M.
, 1996, “
Exceptionally high Young’s modulus observed for individual carbon nanotubes
,”
Nature (London)
0028-0836,
381
, pp.
678
680
.
8.
Wong
,
E. W.
,
Sheehan
,
P. E.
, and
Lieber
,
C. M.
, 1997, “
Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes
,”
Science
0036-8075,
277
, pp.
1971
1975
.
9.
Goze
,
C.
,
Vaccarini
,
L.
,
Henrard
,
L.
,
Bernier
,
P.
,
Hernandez
,
E.
, and
Rubio
,
A.
, 1999, “
Elastic and mechanical properties of carbon nanotubes
,”
Synth. Met.
0379-6779,
103
, pp.
2500
2501
.
10.
Yakobson
,
B. I.
,
Brabec
,
C. J.
, and
Bernholc
,
J.
, 1996, “
Nanomechanics of carbon tubes: Instabilities beyond linear response
,”
Phys. Rev. Lett.
0031-9007,
76
, pp.
2511
–2514.
11.
Yakobson
,
B. I.
,
Campbell
,
M. P.
,
Brabec
,
C. J.
, and
Bernholc
,
J.
, 1997, “
High strain rate fracture and C-chain unraveling in carbon nanotubes
,”
Comput. Mater. Sci.
0927-0256,
8
, pp.
341
348
.
12.
Yakobson
,
B. I.
, 1998, “
Mechanical relaxation and intramolecular plasticity in carbon nanotubes
,”
Appl. Phys. Lett.
0003-6951,
72
, pp.
918
920
.
13.
Yu
,
M.-F.
,
Lourie
,
O.
,
Dyer
,
M. J.
,
Moloni
,
K.
,
Kelly
,
T. F.
, and
Ruoff
,
R. S.
, 2000, “
Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load
,”
Science
0036-8075,
287
, pp.
637
640
.
14.
Avouris
,
Ph.
,
Hertel
,
T.
,
Martel
,
R.
,
Schmidt
,
T.
,
Shea
,
H. R.
, and
Walkup
,
R. E.
, 1999, “
Carbon nanotubes: Nanomechanics, manipulation, and electron devices
,”
Appl. Surf. Sci.
0169-4332,
141
, pp.
201
209
.
15.
Yakobson
,
B. I.
, and
Avouris
,
Ph.
, 2001, “
Mechanical properties of carbon nanotubes
,”
Carbon Nanotubes
, edited by
M. S.
Dresselhaus
,
G.
Dresselhaus
, and
P.
Avouris
, Vol.
80
, pp.
287
329
.
16.
Qian
,
D.
,
Wagner
,
G. J.
,
Liu
,
W. K.
,
Yu
,
M. F.
, and
Ruoff
,
R. S.
, 2002, “
Mechanics of carbon nanotubes
,”
Appl. Mech. Rev.
0003-6900,
55
, pp.
495
533
.
17.
Huang
,
Y. Y.
, and
Wang
,
Z. L.
, 2003, “
Mechanics of nanotubes
,”
Comprehensive Structural Integrity
, edited by
Gerberich
W.
, and
Yang
W.
,
Elsevier Science
, New York, Vol.
8
.
18.
Kolmogorov
,
A. N.
, and
Crespi
,
V. H.
, 2000, “
Smoothest bearings: Interlayer sliding in multiwalled carbon nanotubes
,”
Phys. Rev. Lett.
0031-9007,
85
, pp.
4727
–4730.
19.
Falvo
,
M. R.
,
Taylor
,
R. M.
II
,
Helser
,
A.
,
Chi
,
V.
,
Brooks
,
F. P.
, Jr.
,
Washburn
,
S.
, and
Superfine
,
R.
, 1999, “
Nanometer scale rolling and sliding of carbon nanotubes
,”
Nature (London)
0028-0836,
397
, pp.
236
238
.
20.
Falvo
,
M. R.
,
Steele
,
J.
,
Taylor
,
R. M.
II
, and
Superfine
,
R.
, 2000, “
Evidence of commensurate contact and rolling motion: AFM manipulation studies of carbon nanotubes on HOPG
,”
Tribol. Lett.
1023-8883
9
, pp.
73
76
.
21.
Falvo
,
M. R.
,
Steele
,
J.
,
Taylor
,
R. M.
II
, and
Superfine
,
R.
, 2000, “
Gearlike rolling motion mediated by commensurate contact: Carbon nanotubes on HOPG
,”
Phys. Rev. B
0163-1829,
62
,
R10665
–R10667.
22.
Buldum
,
A.
, and
Lu
,
J. P.
, 1999, “
Atomic scale sliding and rolling of carbon nanotubes
,”
Phys. Rev. Lett.
0031-9007,
83
, pp.
5050
–5053.
23.
Cumings
,
J.
, and
Zettl
,
A.
, 2000, “
Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes
,”
Science
0036-8075,
289
, pp.
602
604
.
24.
Yu
,
M.-F.
,
Yakobson
,
B. I.
, and
Ruoff
,
R. S.
, 2000, “
Controlled sliding and pullout of nested shells in individual multiwalled carbon nanotubes
,”
J. Phys. Chem. B
1089-5647,
104
, pp.
8764
8767
.
25.
Zheng
,
Q. S.
, and
Jiang
,
Q.
, 2002, “
Multiwalled carbon nanotubes as gigahertz oscillators
,”
Phys. Rev. Lett.
0031-9007,
88
, p.
045503
.
26.
Zhang
,
P.
,
Huang
,
Y.
,
Geubelle
,
P. H.
,
Klein
,
P. A.
, and
Hwang
,
K. C.
, 2002, “
The elastic modulus of single-wall carbon nanotubes: A continuum analysis incorporating interatomic potentials
,”
Int. J. Solids Struct.
0020-7683,
39
, pp.
3893
3906
.
27.
Gao
,
G.
,
Cagin
,
T.
, and
Goddard
,
W. A.
III
, 1998, “
Energetics, structure, mechanical and vibrational properties of single-walled carbon nanotubes
,”
Nanotechnology
0957-4484,
9
, pp.
184
191
.
28.
Yu
,
M.-F.
,
Kowalewski
,
T.
, and
Ruoff
,
R. S.
, 2000, “
Investigation of the radial deformability of individual carbon nanotubes under controlled indentation force
,”
Phys. Rev. Lett.
0031-9007,
85
, pp.
1456
–1459.
29.
Yu
,
M.-F.
,
Kowalewski
,
T.
, and
Ruoff
,
R. S.
, 2001, “
Structural analysis of collapsed multiwalled carbon nanotubes by atomic force microscopy
,”
Phys. Rev. Lett.
0031-9007,
86
, pp.
87
–90.
30.
Hertel
,
T.
,
Walkup
,
R. E.
, and
Avouris
,
Ph.
, 1998, “
Deformation of carbon nanotubes by surface van der Waals forces
,”
Phys. Rev. B
0163-1829,
58
, pp.
13870
–13873.
31.
Lordi
,
V.
, and
Yao
,
N.
, 1998, “
Radial compression and controlled cutting of carbon nanotubes
,”
J. Chem. Phys.
0021-9606,
109
, pp.
2509
2512
.
32.
Ma
,
X.-L.
,
Wang
,
H.-T.
, and
Yang
,
W.
, 2004, “
Tribological Behavior of Aligned Single-walled Carbon Nanotubes
,”
ASME J. Eng. Mater. Technol.
0094-4289,
126
, pp.
258
264
.
33.
Yu
,
M.-F.
,
Dyer
,
M. J.
, and
Ruoff
,
R. S.
, 2001, “
Structure and mechanical flexibility of carbon nanotube ribbons: An atomic-force microscopy study
,”
J. Appl. Phys.
0021-8979,
89
, pp.
4554
4557
.
34.
Yang
,
W.
,
Wang
,
H. T.
, and
Huang
,
Y.
, 2004, “
Abnormal tribological behavior of multiwalled nanotube rafts, part II: Inclined rafts
,”
J. Eng. Mater. Technol.
0094-4289
127
(
4
), pp.
393
399
.
35.
Johnson
,
K. L.
,
Kendall
,
K.
, and
Roberts
,
A. D.
, 1971, “
Surface energy and contact of elastic solids
,”
Proc. R. Soc. London, Ser. A
1364-5021,
324
, pp.
301
313
.
36.
Chaudhury
,
M. K.
,
Weaver
,
T.
,
Hui
,
C. Y.
, and
Kramer
,
E. J.
, 1996, “
Adhesive contact of cylindrical lens and a flat sheet
,”
J. Appl. Phys.
0021-8979,
80
, pp.
30
37
.
37.
Fan
,
H.
, and
Keer
,
L. M.
, 1994, “
Two-dimensional contact on an anisotropic elastic half-space
,”
J. Appl. Mech.
0021-8936,
61
, pp.
250
254
.
38.
Suo
,
Z.
, 1990, “
Singularities, interfaces and cracks in dissimilar anisotropic media
,”
Proc. R. Soc. London, Ser. A
1364-5021,
427
, pp.
331
358
.
39.
Johnson
,
K. L.
, 1985,
Contact Mechanics
,
Cambridge University Press
, Cambridge.
40.
Yu
,
H. H.
, and
Suo
,
Z.
, 1998, “
A model of wafer bonding by elastic accommodation
,”
J. Mech. Phys. Solids
0022-5096,
46
, pp.
829
844
.
41.
Ruoff
,
R. S.
,
Tersoff
,
J.
,
Lorents
,
D. C.
,
Subramoney
,
S.
,
Chan
,
B.
, 1993, “
Radial deformation of carbon nanotubes by van der Waals forces
,”
Nature (London)
0028-0836,
364
, pp.
514
516
.
42.
Timoshenko
,
S. P.
, and
Goodier
,
J. N.
, 1987,
Theory of Elasticity
,
3rd ed.
,
McGraw–Hill
, New York.
This content is only available via PDF.
You do not currently have access to this content.