A thermodynamic framework is presented for the theory of Viscoplasticity Based on Overstress (VBO) developed by Krempl and co-workers (Krempl, E., and Ho, K., 2001, in Lemaitre Handbook of Materials Behavior Models, Academic Press, New York, pp. 336–348; 2000, in Time Dependent and Nonlinear Effects in Polymers and Composites, ASTM STP 1357, Schapery, R. A., and Sun, C. T., eds., ASTM, West Conshohocken, PA, pp. 118–137; Cernocky, E. P., and Krempl, E., 1979, Int. J. Non-Linear Mech., 14, pp. 183–203; Gomaa et al., 2004, Int. J. Solids Struct., 41, pp. 3607–3624), for anisotropic materials and small deformations. A Caratheodory-based approach is applied to demonstrate the existence of entropy and absolute temperature, as previously described by Hall (2000, Compos. Sci. Technol., 60, pp. 2581–2599). The present framework indicates that the stress rate-dependent term in the established growth law for the equilibrium stress cannot contribute to the dissipation, and is therefore referred to here as the elastic equilibrium stress rate. A new temperature rate-dependent term is obtained for the same growth law, which is also required to be dissipationless. These terms are therefore identified with dissipationless changes of the stored energy and∕or entropy. In general, the traditional, and thermodynamically justified, forms for the potential functions that arise in the present nonequilibrium treatment lead to dissipationless contributions from internal variable growth law terms that are linear in the rates of the controllable variables. Similar indications, without first establishing entropy and absolute temperature existence, were noted in the modeling of Lehmann (1984, in The Constitutive Law in Thermoplasticity, T. Lehmann, ed., Springer, New York).

1.
Krempl
,
E.
, and
Ho
,
K.
2001, “
Inelastic Compressible and Incompressible, Isotropic, Small Strain Viscoplasticity Theory Based on Overstress (VBO)
,” in
Lemaitre Handbook of Materials Behavior Models
,
Academic Press
, New York, pp.
336
348
.
2.
Krempl
,
E.
, and
Ho
,
K.
2000, “
An Overstress Model for Solid Polymer Deformation Behavior Applied to Nylon 66
,” in
Time Dependent and Nonlinear Effects in Polymers and Composites, ASTM STP 1357
,
Schapery
,
R. A.
, and
Sun
,
C. T.
eds.,
American Society for Testing and Materials
, West Conshohocken, PA, pp.
118
137
.
3.
Cernocky
,
E. P.
, and
Krempl
,
E.
1979, “
A Nonlinear Uniaxial Integral Constitutive Equation Incorporating Rate Effects, Creep and Relaxation
,”
Int. J. Non-Linear Mech.
0020-7462,
14
, pp.
183
203
.
4.
Gomaa
,
S.
,
Sham
,
T.-L.
, and
Krempl
,
E.
2004, “
Finite Element Formulation for Finite Deformation, Isotropic Viscoplasticity Theory Based on Overstress (FVBO)
,”
Int. J. Solids Struct.
0020-7683,
41
, pp.
3607
3624
.
5.
Nemat-Nasser
,
S.
1975, “
On Nonequilibrium Thermodynamics of Continua
,” in
Mechanics Today
, Vol.
2
,
S.
Nemat-Nasser
, ed.,
Pergamon
, New York.
6.
Ward
,
I. M.
1983,
Mechanical Properties of Solid Polymers
,
John Wiley & Sons
, New York.
7.
Adam
,
G.
, and
Gibbs
,
J. H.
1965, “
On the Temperature Dependence of Cooperative Relaxation Properties in Glass-Forming Liquids
,”
J. Chem. Phys.
0021-9606,
43
(
1
), pp.
139
146
.
8.
Hall
,
R. B.
2000, “
Methods in Entropic Thermomechanics
,”
Compos. Sci. Technol.
0266-3538,
60
, pp.
2581
2599
.
9.
Lehmann
,
T.
1984, “
General Frame for the Definition of Constitutive Laws for Large Non-Isothermic Elastic-Plastic and Elastic-Visco-Plastic Deformations
,” in
The Constitutive Law in Thermoplasticity
,
T.
Lehmann
, ed.,
Springer
, New York.
10.
Lemaitre
,
J.
, and
Chaboche
,
J.-L.
1990,
Mechanics of Solid Materials
,
Cambridge University Press
, New York.
11.
Valanis
,
K. C.
1971, “
Irreversibility and Existence of Entropy
,”
Int. J. Non-Linear Mech.
0020-7462,
6
, pp.
337
360
.
12.
Nemat-Nasser
,
S.
1973, “
On Nonequilibrium Thermodynamics of Viscoelasticity and Viscoplasticity
,” in
Foundations of Continuum Thermodynamics
,
Delgado
Domingos
et al.
, (ed.),
John Wiley
, New York.
13.
Nemat-Nasser
,
S.
1973, “
On Nonlinear Thermoelasticity and Nonequilibrium Thermodynamics
,”
Nonlinear Elasticity
,
R. W.
Dickey
, ed.,
Academic Press
, New York, pp.
289
338
.
14.
Nemat-Nasser
,
S.
1978, “
On Nonequilibrium Thermodynamics of Continua: Addendum
,” in
Mechanics Today
, Vol.
4
,
S.
Nemat-Nasser
, ed.,
Pergamon
, New York.
15.
Edelen
D. G. B.
1976, “
A Thermodynamics With Internal Degrees of Freedom and Nonconservative Forces
,”
Int. J. Eng. Sci.
0020-7225,
14
, pp.
1013
1032
.
16.
Boley
,
B. A.
, and
Weiner
,
J. H.
1960,
Theory of Thermal Stresses
,
John Wiley
, New York.
17.
Wilson
,
A. H.
1966,
Thermodynamics and Statistical Mechanics
,
Cambridge University Press
, Cambridge, U.K.
18.
Bailyn
,
M.
1994,
A Survey of Thermodynamics
,
AIP Press
, New York.
19.
Bernstein
,
B.
1960, “
Proof of Caratheodory’s Local Theorem and its Global Application to Thermostatics
,”
J. Math. Phys.
0022-2488,
1
(
3
), pp.
222
224
.
20.
Truesdell
,
C.
1984,
Rational Thermodynamics
,
Springer-Verlag
, New York.
21.
Truesdell
,
C.
1986, “
What Did Gibbs and Caratheodory Leave Us About Thermodynamics?
,” in
New Perspectives in Thermodynamics
,
Serrin
,
J.
, ed.,
Springer-Verlag
, New York, pp.
101
124
.
22.
Buchdahl
,
H. A.
1966,
The Concepts of Classical Thermodynamics
,
Cambridge University Press
, New York.
23.
Dutta
,
M.
, and
Dutta
,
T.
1991, “
Axiomatization of Thermodynamics
,” in
Constantin Caratheodory: An International Tribute
,
Rassias
,
Th. M.
, ed.,
World Scientific Publ. Co.
, Teaneck, NJ, pp.
219
228
.
24.
Wilmanski
,
K.
1992, “
Phenomenological Thermodynamics
,” in
Foundations of Mechanics
,
Zorski
,
H.
, ed.,
Elsevier
, New York.
25.
Silhavy
,
M.
1997,
The Mechanics and Thermodynamics of Continuous Media
,
Springer-Verlag
, Berlin.
26.
Lee
,
E. H.
, and
Liu
,
D. T.
1967, “
Finite-Strain Elastic-Plastic Theory With Application to Plane-Wave Analysis
,”
J. Appl. Phys.
0021-8979,
38
, pp.
19
27
.
27.
Germain
,
P.
, and
Lee
,
E. H.
1973, “
On Shock Waves in Elastic-Plastic Solids
,”
J. Mech. Phys. Solids
0022-5096,
21
, pp.
359
382
.
28.
Coleman
,
B. D.
, and
Owen
,
D. R.
1975, “
On Thermodynamics and Elastic-Plastic Materials
,”
Arch. Ration. Mech. Anal.
0003-9527,
59
, pp.
25
51
.
29.
Coleman
,
B. D.
, and
Owen
,
D. R.
1979, “
On the Thermodynamics of Elastic-Plastic Materials With Temperature-Dependent Moduli and Yield Stresses
,”
Arch. Ration. Mech. Anal.
0003-9527,
70
, pp.
340
354
.
30.
Fung
,
Y. C.
, 1965,
Foundations of Solid Mechanics
,
Prentice-Hall
, Englewood Cliffs, NJ, pp.
343
,
362
.
31.
Lucchesi
,
M.
, and
Silhavy
,
M.
1993, “
Thermoplastic Materials With Combined Hardening
,”
Int. J. Plast.
0749-6419,
9
, pp.
291
315
.
32.
Lucchesi
,
M.
1993, “
Free-Energy Functions for Elastic-Plastic Material Elements
,”
Q. Appl. Math.
0033-569X,
51
(
2
), pp.
299
318
.
33.
Nye
,
J. F.
1979,
Physical Properties of Crystals
,
Oxford University Press
, Oxford, pp.
174
176
.
You do not currently have access to this content.