Commercial, aluminum die-cast alloys are subject to long-term stresses leading to viscoelastic material responses resulting in inefficient engine operation and failure. Constant load creep tests were conducted on aluminum die-casting alloys: B-390, eutectic Al-Si and a 17% Si-Al alloys. Rupture occurred in the primary creep regime, with the eutectic alloy having the longest times to failure. Primary creep was modeled by with A, B, and n dependent on stress. Poor creep performance is linked to the brittle fracture of the primary silicon phase as well as other casting defects.
Issue Section:
Research Papers
1.
Ishikawa
, K.
, Maehara
, M.
, and Kobayashi
, Y.
, 2002
, “Mechanical Modeling and Microstructural Observation of Pure Aluminum Crept Under Constant Stress
,” Mater. Sci. Eng., A
, A322
, pp. 153
–158
.2.
Timothy
, G. J.
, and Farghalli
, M. A.
, 2002
, “Evidence for Dynamic Recrystallization During Harper-Dorn Creep
,” Mater. Sci. Eng., A
, A322
, pp. 148
–152
.3.
Kim
, W.
, Yeon
, J. H.
, and Lee
, J. C.
, 2000
, “Superplastic Deformation of Spray-Deposited Hyper-Eutectic Al-25Si Alloy
,” J. Alloys Compd.
, 308
, pp. 237
–243
.4.
Bae
, D. H.
, and Ghosh
, A. K.
, 2002
, “Cavity Formation and Early Growth in a Superplastic Al-Mg Alloy
,” Acta Mater.
, 50
, pp. 511
–523
.5.
Spigarelli
, S.
, Cabibbo
, M.
, Evangelista
, E.
, and Langdon
, T. G.
, 2002
, “Creep Properties of an Al-2024 Composite Reinforced With SiC Particulates
,” Mater. Sci. Eng., A
, A328
, pp. 39
–47
.6.
Ma
, Z. Y.
, and Tjong
, S. C.
, 2000
, “High-Temperature Creep Behavior of SiC Particulate Reinforced Al-Fe-V-Si Alloy Composite
,” Mater. Sci. Eng., A
, A278
, pp. 5
–15
.7.
Nabarro, F. R. N., and de Villiers, H. L., 1995, The Physics of Creep, Taylor and Francis, London.
8.
Kalpakjian, S., 1997, Manufacturing Processes for Engineering Materials, Addison Wesley Longman.
9.
Lakes, R. S., 1998, Viscoelastic Solids, CRC Press.
10.
Raj
, S. V.
, 2002
, “Power-Law and Exponential Creep in Class M Materials: Discrepancies in Experimental Observations and Implications for Creep Modeling
,” Mater. Sci. Eng., A
, A322
, pp. 132
–147
.11.
Sherby
, O. D.
, and Taleff
, E. M.
, 2002
, “Influence of Grain Size, Solute Atoms and Second-Phase Particles on Creep Behavior of Polycrystalline Solids
,” Mater. Sci. Eng., A
, A322
, pp. 89
–99
.12.
Langdon
, T. G.
, 2000
, “Identifying Creep Mechanisms at Low Stresses
,” Mater. Sci. Eng., A
, A283
, pp. 266
–273
.13.
Cottrell
, A. H.
, 1996
, “Andrade Creep
,” Philos. Mag. Lett.
, 73
(1
), pp. 35
–37
.14.
Nabarro
, F. R. N.
, 1997
, “Thermal Activation and Andrade Creep
,” Philos. Mag. Lett.
, 75
(4
), pp. 227
–233
.15.
Nowick, A. S., and Berry, B. S., 1972, Anelastic Relaxation in Crystalline Solids, Academic, NY.
16.
Ragab
, A. R.
, 2002
, “Creep Rupture Due to Material Damage by Cavitation
,” ASME J. Eng. Mater. Technol.
, 124
, pp. 199
–205
.17.
Ferry, J. D., 1970, Viscoelastic Properties of Polymers, 2nd ed., J. Wiley, NY.
Copyright © 2004
by ASME
You do not currently have access to this content.