Commercial, aluminum die-cast alloys are subject to long-term stresses leading to viscoelastic material responses resulting in inefficient engine operation and failure. Constant load creep tests were conducted on aluminum die-casting alloys: B-390, eutectic Al-Si and a 17% Si-Al alloys. Rupture occurred in the primary creep regime, with the eutectic alloy having the longest times to failure. Primary creep was modeled by Jt=A+Btn with A, B, and n dependent on stress. Poor creep performance is linked to the brittle fracture of the primary silicon phase as well as other casting defects.

1.
Ishikawa
,
K.
,
Maehara
,
M.
, and
Kobayashi
,
Y.
,
2002
, “
Mechanical Modeling and Microstructural Observation of Pure Aluminum Crept Under Constant Stress
,”
Mater. Sci. Eng., A
,
A322
, pp.
153
158
.
2.
Timothy
,
G. J.
, and
Farghalli
,
M. A.
,
2002
, “
Evidence for Dynamic Recrystallization During Harper-Dorn Creep
,”
Mater. Sci. Eng., A
,
A322
, pp.
148
152
.
3.
Kim
,
W.
,
Yeon
,
J. H.
, and
Lee
,
J. C.
,
2000
, “
Superplastic Deformation of Spray-Deposited Hyper-Eutectic Al-25Si Alloy
,”
J. Alloys Compd.
,
308
, pp.
237
243
.
4.
Bae
,
D. H.
, and
Ghosh
,
A. K.
,
2002
, “
Cavity Formation and Early Growth in a Superplastic Al-Mg Alloy
,”
Acta Mater.
,
50
, pp.
511
523
.
5.
Spigarelli
,
S.
,
Cabibbo
,
M.
,
Evangelista
,
E.
, and
Langdon
,
T. G.
,
2002
, “
Creep Properties of an Al-2024 Composite Reinforced With SiC Particulates
,”
Mater. Sci. Eng., A
,
A328
, pp.
39
47
.
6.
Ma
,
Z. Y.
, and
Tjong
,
S. C.
,
2000
, “
High-Temperature Creep Behavior of SiC Particulate Reinforced Al-Fe-V-Si Alloy Composite
,”
Mater. Sci. Eng., A
,
A278
, pp.
5
15
.
7.
Nabarro, F. R. N., and de Villiers, H. L., 1995, The Physics of Creep, Taylor and Francis, London.
8.
Kalpakjian, S., 1997, Manufacturing Processes for Engineering Materials, Addison Wesley Longman.
9.
Lakes, R. S., 1998, Viscoelastic Solids, CRC Press.
10.
Raj
,
S. V.
,
2002
, “
Power-Law and Exponential Creep in Class M Materials: Discrepancies in Experimental Observations and Implications for Creep Modeling
,”
Mater. Sci. Eng., A
,
A322
, pp.
132
147
.
11.
Sherby
,
O. D.
, and
Taleff
,
E. M.
,
2002
, “
Influence of Grain Size, Solute Atoms and Second-Phase Particles on Creep Behavior of Polycrystalline Solids
,”
Mater. Sci. Eng., A
,
A322
, pp.
89
99
.
12.
Langdon
,
T. G.
,
2000
, “
Identifying Creep Mechanisms at Low Stresses
,”
Mater. Sci. Eng., A
,
A283
, pp.
266
273
.
13.
Cottrell
,
A. H.
,
1996
, “
Andrade Creep
,”
Philos. Mag. Lett.
,
73
(
1
), pp.
35
37
.
14.
Nabarro
,
F. R. N.
,
1997
, “
Thermal Activation and Andrade Creep
,”
Philos. Mag. Lett.
,
75
(
4
), pp.
227
233
.
15.
Nowick, A. S., and Berry, B. S., 1972, Anelastic Relaxation in Crystalline Solids, Academic, NY.
16.
Ragab
,
A. R.
,
2002
, “
Creep Rupture Due to Material Damage by Cavitation
,”
ASME J. Eng. Mater. Technol.
,
124
, pp.
199
205
.
17.
Ferry, J. D., 1970, Viscoelastic Properties of Polymers, 2nd ed., J. Wiley, NY.
You do not currently have access to this content.