α-brass and aluminum microhardness and deep nanoindentation data when fitted to the Taylor dislocation-hardening (TDH) model produced a straight-line behavior consistent with the model. Literature data, including copper, silver, and tungsten when also fitted to TDH model, exhibited results similar to the ones produced by the α-brass and aluminum data. The nanohardness data obtained at shallower depths also exhibited straight-line behavior but with a shallower slope. Taken together, the nano-microindentation data constituted what we term a “bilinear behavior,” and we shall discuss possible mechanisms for this behavior.
1.
Fleck
, N. A.
, Muller
, G. M.
, Ashby
, M. F.
, and Hutchinson
, J. W.
, 1994
, “Strain Gradient Plasticity: Theory and Experiment
,” Acta Metall. Mater.
, 42
(2
), pp. 475
–487
.2.
Stolken
, J. S.
, and Evans
, A. G.
, 1998
, “A Microbend Test Method for Measuring the Plasticity Length Scale
,” Acta Metall. Mater.
, 46
, pp. 5109
–5115
.3.
Poole
, W. J.
, Ashby
, M. F.
, and Fleck
, N. A.
, 1996
, “Micro-hardness of Annealed and Work-hardened Copper Polycrystals
,” Acta Metall.
, 34
(4
), pp. 559
–564
.4.
McElhaney
, K. W.
, Vlassak
, J. J.
, and Nix
, W. D.
, 1998
, “Determination of Indenter Tip Geometry and Indentation Contact Area for Depth-sensing Indentation Experiments
,” J. Mater. Res.
, 13
(5
), pp. 1300
–1306
.5.
Ma
, Q.
, and Clarke
, D. R.
, 1995
, “Size Dependent Hardness of Silver Single Crystals
,” J. Mater. Res.
, 10
(4
), pp. 853
–863
.6.
Stelmashenko
, N. A.
, Walls
, M. G.
, Brown
, L. M.
, and Milman
, Yu. V.
, 1993
, “Microindentation on W and Mo Oriented Single Crystals: An STM Study
,” Acta Metall.
, 41
(10
), pp. 2855
–2865
.7.
Hutchinson
, J. W.
, 2000
, “Plasticity at the Micron Scale
,” Int. J. Solids Struct.
, 37
(1–2
), pp. 225
–238
.8.
Fleck
, N. A.
, and Hutchinson
, J. W.
, 1993
, “A Phenomenological Theory for Strain Gradient Effects in Plasticity
,” J. Mech. Phys. Solids
, 41
(12
), pp. 1825
–1857
.9.
Fleck
, N. A.
, and Hutchinson
, J. W.
, 2001
, “A Reformulation of Strain Gradient Plasticity
,” J. Mech. Phys. Solids
, 49
(10
), pp. 2245
–2271
.10.
Nix
, W. D.
, and Gao
, H.
, 1998
, “Indentation Size Effect in Crystalline Materials: A Law for Strain Gradient Plasticity
,” J. Mech. Phys. Solids
, 46
(3
), pp. 411
–425
.11.
Fleck, N. A., and Hutchinson, and J. W., 1997, “Strain Gradient Plasticity,” in Advances in Applied Mechanics, J. W. Hutchinson and T. Y. Wu, eds., Academic Press, New York, Vol. 33, p. 295.
12.
Gao
, H.
, Huang
, Y.
, Nix
, W. D.
, and Hutchison
, J. W.
, 1999
, “Mechanism-based Strain Gradient Plasticity–I. Theory
,” J. Mech. Phys. Solids
, 47
(6
), pp. 1239
–1263
.13.
Huang
, Y.
, Gao
, H.
, Nix
, W. D.
, and Hutchinson
, J. W.
, 2000
, “Mechanism-based Strain Gradient Plasticity–II. Analysis
,” J. Mech. Phys. Solids
, 48
(1
), pp. 99
–128
.14.
Duan
, D.-M.
, Wu
, N. Q.
, Slaughter
, W. S.
, and Mao
, S. X.
, 2000
, “Length Scale Effect on Mechanical Behavior Due to Strain Gradient Plasticity
,” Mater. Sci. Eng., A
, 303
(1–2
), pp. 241
–249
.15.
Weertman
, J.
, 2002
, “Anomalous Work Hardening, Non-redundant Screw Dislocations in a Circular Bar Deformed in Torsion, and Non-redundant Edge Dislocations in a Bent Foil
,” Acta Mater.
, 50
, pp. 673
–689
.16.
Elmustafa, A. A., and Stone, D. S., 1999, “Indentation Size Effect: A Kinetic Perspective,” in Advanced Materials for the 21st Century, 1999 Julia Weertman Symp., Y.-W. Chung, and D. C. Dunand, eds., Cincinnati, OH, pp. 311–321.
17.
Elmustafa
, A. A.
, and Stone
, D. S.
, 2003
, “Nanoindentation and the Indentation Size Effect: Kinetics of Deformation and Strain Gradient Plasticity
,” J. Mech. Phys. Solids
, 51
(2
), pp. 357
–381
.18.
Joslin
, D. L.
, and Oliver
, W. C.
, 1990
, “A New Method for Analyzing Data from Continuous Depth-Sensing Microindentation Tests
,” J. Mater. Res.
, 5
(1
), pp. 123
–126
.19.
Stone
, D. S.
, Yoder
, K. B.
, and Sproul
, W. D.
, 1991
, “Hardness and Elastic Modulus of TiN Based on Continuous Indentation Technique and New Correlation
,” J. Vac. Sci. Technol.
, 9
(4
), pp. 2543
–2547
.20.
Lim
, Y. Y.
, and Chaudhri
, M. M.
, 1999
, “The Effect of Indenter Load on the Nanohardness of Ductile Metals: An Experimental Study on Polycrystalline Workhardened and Annealed Oxygen-free Copper
,” Philos. Mag. A
, 79
, pp. 2979
–3000
.21.
Swadener
, J. G.
, George
, E. P.
, and Pharr
, G. M.
, 2002
, “The Correlation of the Indentation Size Effect Measured With Indenters of Various Shapes
,” J. Mech. Phys. Solids
, 50
, pp. 681
–694
.22.
Xin
, X. J.
, Daehn
, G. S.
, and Wagoner
, R. H.
, 1997
, “Equilibrium Configuration of Coaxial Prismatic Dislocation Loops and Related Size-dependent Plasticity
,” Acta Mater.
, 45
, pp. 1821
–1836
.23.
Kassner
, M. E.
, Perez-Prado
, M.-T.
, Vecchio
, K. S.
, and Wall
, M. A.
, 2000
, “Determination of Internal Stresses in Cyclically Deformed Copper Single Crystals Using Convergent-Beam Electron Diffraction and Dislocation Dipole Separation Measurements
,” Acta Mater.
, 48
, pp. 4247
–4254
.24.
Tippelt
, B.
, Bretschneider
, J.
, and Ha¨hner
, P.
, 1997
, “The Dislocation Microstructure of Cyclically Deformed Nickel Single Crystals at Different Temperatures
,” Phys. Status Solidi A
, 163
, pp. 11
–26
.25.
Verecky
, S.
, Kratochvil
, J.
, and Kroupa
, F.
, 2002
, “The Stress Field of a Rectangular Prismatic Dislocation Loops
,” Phys. Status Solidi A
, 191
, pp. 418
–426
.26.
Elmustafa
, A. A.
, and Stone
, D. S.
, 2002
, “Indentation Size Effect in Polycrystalline F.C.C. Metals
,” Acta Metall. Mater.
, 50
(14
), pp. 3641
–3650
.27.
Taylor
, G.
, 1992
, “Thermally-activated Deformation of bcc Metals and Alloys
,” Prog. Mater. Sci.
, 36
, pp. 29
–61
.28.
Conrad, H., 1965, in High Strength Materials, V. F. Zackay, ed., Wiley, New York, p. 436.
29.
Briggs
, T. L.
, and Campbell
, J. D.
, 1972
, “The Effect of Strain Rate and Temperature on the Yield and Flow Stress of Polycrystalline Niobium and Molybdenum
,” Acta Metall.
, 20
, pp. 711
–724
.30.
Boyer, H. E., and Gall, T. L., 1985, Metals Handbook, Desk Edition, American Society for Metals, Metals Park, Ohio.
31.
Stone, D. S., and Yoder, K. B., 1993, in Load and Depth-Sensing Indentation Tester for Properties Measurement at Non-Ambient Temperatures: Thin Films, Stresses and Mechanical Properties IV, Mat. Res. Soc. Proc. Vol. 308, P. H. Townsend, T. Weihs, J. E. Sanchez, Jr., and P. Borgensen, eds., Pittsburgh, Mat. Res. Soc., p. 121.
32.
Yoder, K. B., and Stone, D. S., 1993, “Load-and-depth-sensing Indentation Tester for Properties Measurement at Non-ambient Temperatures,” in Mat. Res. Soc. Proc., Mat. Res. Soc., Pittsburgh, p. 308.
33.
Elmustafa
, A. A.
, and Stone
, D. S.
, 2003
, “Stacking Fault Energy and Dynamic Recovery: Do They Impact the Indentation Size Effect
,” Mater. Sci. Eng., A
, 238
, pp. 1
–8
.34.
Kramer
, D.
, Juang
, H.
, Kriese
, M.
, Robach
, J.
, Nelson
, J.
, Wright
, A.
, Bahr
, D.
, and Gerberich
, W. W.
, 1999
, “Yield Strength Predictions From the Plastic Zone Around Nanocontacts
,” Acta Metall. Mater.
, 47
(1
), pp. 333
–343
.35.
Gao
, H.
, Huang
, Y.
, and Nix
, W. D.
, 1999
, “Modeling Plasticity at the Micrometer Scale
,” Naturwissenschaften
, 86
, pp. 507
–515
.36.
Kroupa
, F.
, 1960
, “Circular Edge Dislocation Loop
,” Czech. J. Phys., Sect. B
, 10
, pp. 284
–293
.37.
Khraishi
, T. A.
, Zbib
, H. M.
, Hirth
, J. P.
, and de La Rubia
, T. D.
, 2000
, “The Stress Field of a General Volterra Dislocation Loop
,” Philos. Mag. A
, 80
, pp. 95
–105
.38.
Elmustafa, A. A., Ananda, A. A., and Elmahboub, W. I., “Dislocation Mechanics Simulation of the Bilinear Behavior in Micro and Nanoindentations,” J. Mater. Res., 19(3), pp. 768–779.
Copyright © 2004
by ASME
You do not currently have access to this content.