It is known that most engineering materials contain some defects in the form of cracks, voids, or inclusions. As an example, for various metals, the size, shape, and distributions of microdiscontinuities have been investigated 1,2. To evaluate the defects on the strength of structures, it is fundamental to know the stress concentration of elliptical and ellipsoidal inclusions because they cover a lot of particular cases, such as line, circular, and spherical defects. In the previous studies, an ellipsoidal inclusion has been studied by several researchers 3,4,5,6. Also, interactions among elliptical, and ellipsoidal inclusions have been discussed 5,6,7,8,9,10,11,12,13,14. Several elasticity problems involving a half-space with a spheroidal inclusion have been studied by Tsuchida et al. 15,16,17,18...

1.
Mitchell
,
M. R.
,
1977
, “
Review on the Mechanical Properties of Cast Steels With Emphasis on Fatigue Behavior and Influence of Microdiscontinuities
,”
ASME J. Eng. Mater. Technol.
,
99
, pp.
329
343
.
2.
Murakami, Y., 2002, Metal Fatigue: Effect of Small Defects and Nonmetallic Inclusions, Elsevier.
3.
Edwards
,
R. H.
,
1952
, “
Stress Concentrations Around Spherical Inclusions and Cavities
,”
ASME J. Appl. Mech.
,
19
(
1
),
19
30
.
4.
Eshelby
,
J. D.
,
1957
, “
The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems
,”
Proc. R. Soc. London, Ser. A
,
241
, pp.
376
396
.
5.
Eshelby
,
J. D.
,
1959
, “
The Elastic Field Outside an Ellipsoidal Inclusion
,”
Proc. R. Soc. London, Ser. A
,
252
, pp.
561
569
.
6.
Donnel, L. H., 1941, “Stress Concentration Due to Elliptical Discontinuities in Plates Under Edge Forces,” Ann. Vol. T. Von Karman, Calif. Inst. Tech., pp. 293–309.
7.
Nisitani
,
H.
,
1968
, “
Approximate Calculation Method of Interaction Between Notches and Its Appllications
,”
J. JSME
,
70
(
589
), pp.
35
47
, (in Japanese).
8.
Shioya
,
S.
,
1970
, “
Tension of an Infinite Thin Plate Having Two Rigid Spherical Inclusions
,”
Trans. JSME
,
36
, pp.
886
897
, (in Japanese).
9.
Isida
,
M.
, and
Igawa
,
H.
,
1994
, “
Some Asymtotic Behavior and Formulate of Stress Intensity Factors for a Collinear and Parallel Cracks Under Various Loadings
,”
Int. J. Fract.
,
65
, pp.
247
259
.
10.
Noda
,
N.-A.
, and
Matsuo
,
T.
,
1997
, “
Analysis of a Row of Elliptical Inclusions in a Plate Using Singular Integral Equations
,”
Int. J. Fract.
,
83
, pp.
315
336
.
11.
Miyamoto
,
H.
,
1957
, “
On the Problem of the Theory of Elasticity for a Region Containing More Than Two Sperical Cavities
,”
Trans. JSME
,
23
(
131
), pp.
431
436
, (in Japanese).
12.
Nisitani
,
H.
,
1963
, “
On the Tension of an Elastic Body Having an Infinite Row of Spheroidal Cavities
,”
Trans. JSME
,
29
(
200
), pp.
765
768
, (in Japanese).
13.
Eubank
,
R. A.
,
1965
, “
Stress Interference in Three-Dimensional Torsion
,”
ASME J. Appl. Mech.
,
32
(
1
), pp.
21
25
.
14.
Shelly
,
J. F.
, and
Yu
,
Yi-Yuan
,
1966
, “
The Effect of Two Rigid Spherical Inclusions on the Stresses in an Infinite Elastic Solids
,”
ASME J. Appl. Mech.
,
33
(
1
), pp.
68
74
.
15.
Noda
,
N.-A.
,
Hayashida
,
H.
, and
Tomari
,
K.
,
2000
, “
Interaction Among a Row of Ellipsoidal Inclusions
,”
Int. J. Fract.
,
102
, pp.
371
392
.
16.
Noda
,
N.-A.
,
Ogasawara
,
N.
, and
Matsuo
,
T.
,
2003
, “
Asymmetric Problem of a Row of Revolutional Ellipsoidal Cavities Using Singular Integral Equations
,”
Int. J. Solids Struct.
,
40
(
8
), pp.
1923
1941
.
17.
Tsuchida
,
E.
, and
Nakahara
,
I.
,
1970
, “
Three-Dimensional Stress Concentration Around a Spherical Cacvity in a Semi-Infinite Elastic Body
,”
Bull. JSME
,
13
, pp.
499
508
.
18.
Tsuchida
,
E.
, and
Nakahara
,
I.
,
1972
, “
Stresses in a Semi-Infinite Body Subjected to Uniform Pressure on the Surface of a Cavity and the Plane Boundary
,”
Bull. JSME
,
15
, pp.
1
10
.
19.
Tsuchida
,
E.
,
Nakahara
,
I.
, and
Kodama
,
M.
,
1982
, “
Stress Concentration Around a Prolate Spheroidal Cavity in a Semi-Infinite Elastic Body Under All-Around Tension
,”
Bull. JSME
,
25
(
202
), pp.
493
500
.
20.
Jasiuk
,
I.
,
Sheng
,
P. Y.
, and
Tsuchida
,
E.
,
1997
, “
A Sherical Inclusion in an Elastic Half-Space Under Shear
,”
ASME J. Appl. Mech.
,
64
, pp.
471
479
.
21.
Erdogan
,
F.
, and
Aksogan
,
O.
,
1974
, “
Bonded Half Planes Containing an Arbitrarily Oriented Crack
,”
Int. J. Solids Struct.
,
10
, pp.
569
585
.
22.
Cook
,
T. S.
, and
Erdogan
,
F.
,
1972
, “
Stresses in Bonded Materials With a Crack Perpendicular to the Interface
,”
Int. J. Eng. Sci.
,
10
, pp.
677
697
.
23.
Isida
,
M.
, and
Noguchi
,
H.
,
1983
, “
An Arbitrary Array of Cracks in Bonded Semi-Infinite Bodies Under In-Plane Loads
,”
Trans. Japan Society of Mechanical Engineers.
,
4
(
437
), pp.
36
45
, (in Japanese).
24.
Willis
,
J. R.
,
1972
, “
The Penny-Shaped Crack on an Interface
,”
Q. J. Mech. Appl. Math.
,
25
, pp.
367
385
.
25.
Erdogan
,
F.
, and
Arin
,
K.
,
1972
, “
Penny-Shaped Interface Crack Between an Elastic Layer and a Half-Space
,”
Int. J. Solids Struct.
,
8
, pp.
893
109
.
26.
Kassir
,
M. K.
, and
Bregman
,
A. M.
,
1972
, “
The Stress Intensity Factor for a Penny-Shaped Crack Between Two Dissimilar Materials
,”
ASME J. Appl. Mech.
,
39
, pp.
308
301
.
27.
Shibuya
,
T.
,
Koizumi
,
T.
, and
Twamoto
,
T.
,
1989
, “
Stress Analysis of the Vicinity of an Elliptical Crack at the Interface of Two Bounded Half-Spaces
,”
JSME Int. J.
,
32
, pp.
485
491
.
28.
Nakamura
,
T.
,
1991
, “
Three-Dimensional Stress Fields of Elastic Interfaces Cracks
,”
ASME J. Appl. Mech.
,
58
, pp.
939
946
.
29.
Yuuki
,
R.
, and
Xu
,
J.-Q.
,
1992
, “
A BEM Analysis of a Three-Dimensional Interfacial Crack of Bimaterials
,”
Trans. JSME.
,
58
(
545
), pp.
39
46
, (in Japanese).
30.
Qin
,
T. Y.
, and
Noda
,
N.-A.
,
2002
, “
Analysis of a Three-Dimensional Crack Terminating at an Interface Using a Hypersingular Integral Equation Method
,”
ASME J. Appl. Mech.
,
69
, pp.
626
631
.
31.
Qin
,
T. Y.
, and
Noda
,
N.-A.
,
2002
, “
Stress Intensity Factors of a Rectangular Crack Meeting a Bimaterial Interface
,”
Int. J. Solids Struct.
,
40
(
10
), pp.
2473
2486
.
32.
Noda
,
N.-A.
,
Ohzono
,
R.
, and
Chen
,
M.-C.
,
2003
, “
Analysis of an Elliptical Crack Parallel to a Bimaterial Interface Under Tension
,”
Mechanics of Materials
35
, pp.
1059
1076
.
1.
Nisitani
,
H.
,
1967
, “
The Two-Dimensional Stress Problem Solved Using an Electric Digital Computer
,”
J. JSME.
,
70
, pp.
627
632
, (in Japanese);
2.
(
1969
,
Bulletin of JSME.
11
, pp.
14
23
).
1.
Noda
,
N.-A.
, and
Matsuo
,
T.
,
1995
, “
Singular Integral Equation Method in Optimization of Stress-Relieving Hole: A New Approach Based on the Body Force Method
,”
Int. J. Fract.
,
70
, pp.
147
165
.
2.
Noda
,
N.-A.
, and
Matsuo
,
T.
,
1997
, “
Numerical Solution of Singular Integral Equations in Stress Concentration Problems
,”
Int. J. Fract.
,
34
(
19
), pp.
2429
2444
.
3.
Noda
,
N.-A.
, and
Matsuo
,
T.
,
1998
, “
Singular Integral Equation Method for Interaction Between Elliptical Inclusions
,”
ASME J. Appl. Mech.
,
65
, pp.
310
319
.
4.
Nisitani, H., and Chen, D. H., 1987, Taisekiryokuho (The Body Force Method), Baifukan (in Japanese).
5.
Chen, M.-C., and Noda, N.-A., 2002, “Force at a Point in the Interior of One of Two Jointed Semi-Infinite Solids,” Proceedings the 2002 Annual Meeting of JSME/MMD 02–05, pp. 307–308 (in Japanese); (2003, Kikai no Kenkyu (Science of Machine), 55(4), pp. 468–475 (in Japanese)).
6.
Nisitani
,
H.
, and
Noda
,
N.-A.
,
1984
, “
Tension of a Cylindrical Bar Having an Infinite Row of Circumferential Cracks
,”
Eng. Fract. Mech.
,
20
(
4
), pp.
675
686
.
7.
Nisitani
,
H.
, and
Noda
,
N.-A.
,
1984
, “
Stress Concentration of a Cylindrical Bar With a V-Shaped Circumferential Groove Under Torsion, Tension or Bending
,”
Eng. Fract. Mech.
,
20
(
5/6
), pp.
743
766
.
8.
Brooksbank
,
D.
, and
Andrews
,
K. W.
,
1972
, “
Stress Fields Around Inclusions and their Relation to Mechanical Properties
,”
J. Iron Steel Inst., London
,
210
, pp.
246
255
.
You do not currently have access to this content.