We have developed an analytical method to determine the coefficient of thermal expansion (CTE) for single wall carbon nanotubes (CNTs). We have found that all CTEs are negative at low and room temperature and become positive at high temperature. As the CNT diameter decreases, the range of negative CTE shrinks. The CTE in radial direction of the CNT is less than that in the axial direction for armchair CNTs, but the opposite holds for zigzag CNTs. The radial CTE is independent of the CNT helicity, while the axial CTE shows a strong helicity dependence.
Issue Section:
Technical Papers
1.
Iijima
, S.
, 1991
, “Helical Microtubules of Graphite Carbon
,” Nature (London)
, 354
(6348
), pp. 56
–58
.2.
Ruoff
, R. S.
, and Lorents
, D. C.
, 1995
, “Mechanical and Thermal Properties of Carbon Nanotubes
,” Carbon
, 33
(7
), pp. 925
–930
.3.
Srivastava
, D.
, Menon
, M.
, and Cho
, K. J.
, 2001
, “Computational Nanotechnology With Carbon Nanotubes and Fullerenes
,” Comput. Sci. Eng.
, 3
(4
), pp. 42
–55
.4.
Yakobson, B. I., and Avouris, P., 2001, “Topics of Applied Physics,” Carbon Nanotubes, M. S. Dresselhaus, G. Dresselhaus, and P. Avouris, 80, pp. 287–329.
5.
Qian
, D.
, Wagner
, G. J.
, Liu
, W. K.
, Yu
, M.-F.
, and Ruoff
, R. S.
, 2002
, “Mechanics of Carbon Nanotubes
,” Appl. Mech. Rev.
, 55
(6
), pp. 495
–553
.6.
Thostenson
, E. T.
, Ren
, Z.
, and Chou
, T. W.
, 2001
, “Advances in the Science and Technology of Carbon Nanotubes and Their Composites: A Review
,” Combust. Sci. Technol.
, 61
(13
), pp. 1899
–1912
.7.
Heath
, J. R.
, 2002
, “Wires, Switches, and Wiring: A Route Toward a Chemically Assembled Electronic Nanocomputer
,” Pure Appl. Chem.
, 72
(1–2
), pp. 11
–20
.8.
Tans
, S. J.
, Verschueren
, A. R. M.
, and Dekker
, C.
, 1998
, “Room-Temperature Transistor Based on a Single Carbon Nanotube
,” Nature (London)
, 393
(6680
), pp. 49
–52
.9.
Hu
, J. T.
, Min
, O. Y.
, Yang
, P. D.
, and Lieber
, C. M.
, 1999
, “Controlled Growth and Electrical Properties of Heterojunctions of Carbon Nanotubes and Silicon Nanowires
,” Nature (London)
, 399
(6731
), pp. 48
–49
.10.
Bachtold
, A.
, Hadley
, P.
, Nakanishi
, T.
, and Dekker
, C.
, 2001
, “Logic Circuits With Carbon Nanotube Transistors
,” Science
, 294
(5545
), pp. 1317
–1320
.11.
Appenzeller
, J.
, Knoch
, J.
, Derycke
, V.
, Martel
, R.
, Wind
, S.
, and Avouris
, P.
, 2002
, “Field-Modulated Carrier Transport in Carbon Nanotube Transistors
,” Phys. Rev. Lett.
, 89
(12
), pp. 126801
-1
.12.
Avouris
, P.
, Martel
, R.
, Derycke
, V.
, and Appenzeller
, J.
, 2002
, “Carbon Nanotube Transistors and Logic Circuits
,” Physica B
, 323
(1–4
), pp. 6
–14
.13.
Derycke
, V.
, Martel
, R.
, Appenzeller
, J.
, and Avouris
, P.
, 2002
, “Controlling Doping and Carrier Injection in Carbon Nanotube Transistors
,” Appl. Phys. Lett.
, 80
(15
), pp. 2773
–2775
.14.
Leonard
, F.
, and Tersoff
, J.
, 2002
, “Multiple Functionality in Nanotube Transistors
,” Appl. Phys. Lett.
, 88
(25
), pp. 258302
-1
.15.
Rosenblatt
, S.
, Yaish
, Y.
, Park
, J.
, Gore
, J.
, Sazonova
, V.
, and McEuen
, P. L.
, 2002
, “High Performance Electrolyte Gated Carbon Nanotube Transistors
,” Nano Lett.
, 2
(8
), pp. 869
–872
.16.
Swenson
, C. A.
, 1983
, “Recommended Values for the Thermal Expansivity of Silicon From 0-K to 1000-K
,” J. Phys. Chem. Ref. Data
, 12
(2
), pp. 179
–182
.17.
Kagaya
, H. M.
, and Soma
, T.
, 1985
, “Temperature-Dependence of the Linear Thermal-Expansion Coefficient for Si and Ge
,” Phys. Status Solidi B
, 129
(1
), pp. K5–K8
K5–K8
.18.
White, G. K., and Minges, M. L., 1985, Thermophysical Properties of Some Key Solids, Pergamon, New York.
19.
Kayago
, H. M.
, Shoji
, N.
, and Soma
, T.
, 1987
, “Specific-Heat and Thermal-Expansion at High-Temperatures of Si and Ge
,” Phys. Status Solidi B
, 142
(1
), pp. K13–K17
K13–K17
.20.
Madelung, O., 1987, Landolt-Bornstein, New Series, Intrinsic Properties of Group IV Elements and III–V, II–VI, and I–VII Compounds, Springer-Verlag, Berlin.
21.
Biernacki
, S.
, and Scheffler
, M.
, 1989
, “Negative Thermal Expansion of Diamond and Zinc-Blende Semiconductors
,” Phys. Rev. Lett.
, 63
(3
), pp. 290
–293
.22.
Buda
, F.
, Car
, R.
, and Parrinello
, M.
, 1990
, “Thermal-Expansion of C-Si Via Ab Initio Molecular-Dynamics
,” Phys. Rev. B
, 41
(3
), pp. 1680
–1683
.23.
Xu
, C. H.
, Wang
, C. Z.
, Chan
, C. T.
, and Ho
, K. M.
, 1991
, “Theory of the Thermal Expansion of Si and Diamond
,” Phys. Rev. B
, 43
(6
), pp. 5024
–5027
.24.
Biernacki
, S.
, and Scheffler
, M.
, 1994
, “The Influence of the Isotopic Composition on Crystalline Si
,” J. Phys.: Condens. Matter
, 6
(26
), pp. 4879
–4884
.25.
Fabian
, J.
, and Allen
, P. B.
, 1997
, “Thermal Expansion and Gruneisen Parameters of Amorphous Silicon: A Realistic Model Calculation
,” Phys. Rev. Lett.
, 79
(10
), pp. 1885
–1888
.26.
Bandow
, S.
, 1997
, “Radial Thermal Expansion of Purified Multiwall Carbon Nanotubes Measured by X-Ray Diffraction
,” Jpn. J. Appl. Phys., Part 2
, 36
(10B
), pp. 1403
–1405
.27.
Maniwa
, Y.
, Fujiwara
, R.
, Kira
, H.
, Tou
, H.
, Nishibori
, E.
, Takata
, M.
, Sakata
, M.
, Fujiwara
, A.
, Zhao
, X.
, Jijima
, S.
, and Ando
, Y.
, 2001
, “Multiwalled Carbon Nanotubes Grown in Hydrogen Atmosphere: A X-Ray Diffractionf Study
,” Phys. Rev. B
, 64
(7
), pp. 073105
-1
.28.
Yosida
, Y.
, 2000
, “High-Temperature Shrinkage of Single-Walled Carbon Nanotube Bundles up to 1600K
,” J. Appl. Phys.
, 87
(7
), pp. 3338
–3341
.29.
Maniwa
, Y.
, Fujiwara
, R.
, Kira
, H.
, Tou
, H.
, Kataura
, H.
, Suzuki
, S.
, Achiba
, Y.
, Nishibori
, E.
, Takata
, M.
, Sakata
, M.
, Fujiwara
, A.
, and Suematsu
, H.
, 2001
, “Thermal Expansion of Single-Walled Carbon Nanotube (SWNT) Bundles: X-Ray Diffraction Studies
,” Phys. Rev. B
, 64
(24
), pp. 241402
-1
.30.
Wei
, C.
, Srivastava
, D.
, and Cho
, K.
, 2002
, “Thermal Expansion and Diffusion Coefficients of Carbon Nanotube-Polymer Composites
,” Nano Lett.
, 2
(6
), pp. 647
–650
.31.
Raravikar
, N. R.
, Keblinski
, P.
, Rao
, A. M.
, Dresselhaus
, M. S.
, Schadler
, L. S.
, and Ajayan
, P. M.
, 2002
, “Temperature Dependence of Radial Breathing Mode Raman Frequency of Single-Walled Carbon Nanotubes
,” Phys. Rev. B
, 66
(23
), pp. 235424
-1
.32.
Tersoff
, J.
, 1988
, “New Empirical Approach for the Structure and Energy of Covalent Systems
,” Phys. Rev. B
, 37
(12
), pp. 6991
–7000
.33.
Brenner
, D. W.
, 1990
, “Empirical Potential for Hydrocarbons for Use in Simulating the Chemical Vapor Deposition of Diamond Films
,” Phys. Rev. B
, 42
(15
), pp. 9458
–9471
.34.
Billings, B. H., and Gray, D. E., 1972, American Institute of Physics Handbook, McGraw-Hill, New York.
35.
Chandler, D., 1987, Introduction to Modern Statistical Mechanics, Oxford University Press, Oxford.
36.
Saito, R., Dresselhaus, G., and Dresselhaus, M. S., 1998, Physical Properties of Carbon Nanotubes, Imperial College Press, London.
37.
Sanchez-Portal
, D.
, Artacho
, E.
, and Solar
, J. M.
, 1999
, “Ab Initio Structure, Elastic, and Vibrational Properties of Carbon Nanotubes
,” Phys. Rev. B
, 59
(19
), pp. 12678
–12688
.38.
Foiles
, S. M.
, 1994
, “Evaluation of Harmonic Methods for Calculating the Free Energy of Defects in Solids
,” Phys. Rev. B
, 49
(21
), pp. 14930
–14938
.Copyright © 2004
by ASME
You do not currently have access to this content.