We have developed an analytical method to determine the coefficient of thermal expansion (CTE) for single wall carbon nanotubes (CNTs). We have found that all CTEs are negative at low and room temperature and become positive at high temperature. As the CNT diameter decreases, the range of negative CTE shrinks. The CTE in radial direction of the CNT is less than that in the axial direction for armchair CNTs, but the opposite holds for zigzag CNTs. The radial CTE is independent of the CNT helicity, while the axial CTE shows a strong helicity dependence.

1.
Iijima
,
S.
,
1991
, “
Helical Microtubules of Graphite Carbon
,”
Nature (London)
,
354
(
6348
), pp.
56
58
.
2.
Ruoff
,
R. S.
, and
Lorents
,
D. C.
,
1995
, “
Mechanical and Thermal Properties of Carbon Nanotubes
,”
Carbon
,
33
(
7
), pp.
925
930
.
3.
Srivastava
,
D.
,
Menon
,
M.
, and
Cho
,
K. J.
,
2001
, “
Computational Nanotechnology With Carbon Nanotubes and Fullerenes
,”
Comput. Sci. Eng.
,
3
(
4
), pp.
42
55
.
4.
Yakobson, B. I., and Avouris, P., 2001, “Topics of Applied Physics,” Carbon Nanotubes, M. S. Dresselhaus, G. Dresselhaus, and P. Avouris, 80, pp. 287–329.
5.
Qian
,
D.
,
Wagner
,
G. J.
,
Liu
,
W. K.
,
Yu
,
M.-F.
, and
Ruoff
,
R. S.
,
2002
, “
Mechanics of Carbon Nanotubes
,”
Appl. Mech. Rev.
,
55
(
6
), pp.
495
553
.
6.
Thostenson
,
E. T.
,
Ren
,
Z.
, and
Chou
,
T. W.
,
2001
, “
Advances in the Science and Technology of Carbon Nanotubes and Their Composites: A Review
,”
Combust. Sci. Technol.
,
61
(
13
), pp.
1899
1912
.
7.
Heath
,
J. R.
,
2002
, “
Wires, Switches, and Wiring: A Route Toward a Chemically Assembled Electronic Nanocomputer
,”
Pure Appl. Chem.
,
72
(
1–2
), pp.
11
20
.
8.
Tans
,
S. J.
,
Verschueren
,
A. R. M.
, and
Dekker
,
C.
,
1998
, “
Room-Temperature Transistor Based on a Single Carbon Nanotube
,”
Nature (London)
,
393
(
6680
), pp.
49
52
.
9.
Hu
,
J. T.
,
Min
,
O. Y.
,
Yang
,
P. D.
, and
Lieber
,
C. M.
,
1999
, “
Controlled Growth and Electrical Properties of Heterojunctions of Carbon Nanotubes and Silicon Nanowires
,”
Nature (London)
,
399
(
6731
), pp.
48
49
.
10.
Bachtold
,
A.
,
Hadley
,
P.
,
Nakanishi
,
T.
, and
Dekker
,
C.
,
2001
, “
Logic Circuits With Carbon Nanotube Transistors
,”
Science
,
294
(
5545
), pp.
1317
1320
.
11.
Appenzeller
,
J.
,
Knoch
,
J.
,
Derycke
,
V.
,
Martel
,
R.
,
Wind
,
S.
, and
Avouris
,
P.
,
2002
, “
Field-Modulated Carrier Transport in Carbon Nanotube Transistors
,”
Phys. Rev. Lett.
,
89
(
12
), pp.
126801
-
1
.
12.
Avouris
,
P.
,
Martel
,
R.
,
Derycke
,
V.
, and
Appenzeller
,
J.
,
2002
, “
Carbon Nanotube Transistors and Logic Circuits
,”
Physica B
,
323
(
1–4
), pp.
6
14
.
13.
Derycke
,
V.
,
Martel
,
R.
,
Appenzeller
,
J.
, and
Avouris
,
P.
,
2002
, “
Controlling Doping and Carrier Injection in Carbon Nanotube Transistors
,”
Appl. Phys. Lett.
,
80
(
15
), pp.
2773
2775
.
14.
Leonard
,
F.
, and
Tersoff
,
J.
,
2002
, “
Multiple Functionality in Nanotube Transistors
,”
Appl. Phys. Lett.
,
88
(
25
), pp.
258302
-
1
.
15.
Rosenblatt
,
S.
,
Yaish
,
Y.
,
Park
,
J.
,
Gore
,
J.
,
Sazonova
,
V.
, and
McEuen
,
P. L.
,
2002
, “
High Performance Electrolyte Gated Carbon Nanotube Transistors
,”
Nano Lett.
,
2
(
8
), pp.
869
872
.
16.
Swenson
,
C. A.
,
1983
, “
Recommended Values for the Thermal Expansivity of Silicon From 0-K to 1000-K
,”
J. Phys. Chem. Ref. Data
,
12
(
2
), pp.
179
182
.
17.
Kagaya
,
H. M.
, and
Soma
,
T.
,
1985
, “
Temperature-Dependence of the Linear Thermal-Expansion Coefficient for Si and Ge
,”
Phys. Status Solidi B
,
129
(
1
), pp.
K5–K8
K5–K8
.
18.
White, G. K., and Minges, M. L., 1985, Thermophysical Properties of Some Key Solids, Pergamon, New York.
19.
Kayago
,
H. M.
,
Shoji
,
N.
, and
Soma
,
T.
,
1987
, “
Specific-Heat and Thermal-Expansion at High-Temperatures of Si and Ge
,”
Phys. Status Solidi B
,
142
(
1
), pp.
K13–K17
K13–K17
.
20.
Madelung, O., 1987, Landolt-Bornstein, New Series, Intrinsic Properties of Group IV Elements and III–V, II–VI, and I–VII Compounds, Springer-Verlag, Berlin.
21.
Biernacki
,
S.
, and
Scheffler
,
M.
,
1989
, “
Negative Thermal Expansion of Diamond and Zinc-Blende Semiconductors
,”
Phys. Rev. Lett.
,
63
(
3
), pp.
290
293
.
22.
Buda
,
F.
,
Car
,
R.
, and
Parrinello
,
M.
,
1990
, “
Thermal-Expansion of C-Si Via Ab Initio Molecular-Dynamics
,”
Phys. Rev. B
,
41
(
3
), pp.
1680
1683
.
23.
Xu
,
C. H.
,
Wang
,
C. Z.
,
Chan
,
C. T.
, and
Ho
,
K. M.
,
1991
, “
Theory of the Thermal Expansion of Si and Diamond
,”
Phys. Rev. B
,
43
(
6
), pp.
5024
5027
.
24.
Biernacki
,
S.
, and
Scheffler
,
M.
,
1994
, “
The Influence of the Isotopic Composition on Crystalline Si
,”
J. Phys.: Condens. Matter
,
6
(
26
), pp.
4879
4884
.
25.
Fabian
,
J.
, and
Allen
,
P. B.
,
1997
, “
Thermal Expansion and Gruneisen Parameters of Amorphous Silicon: A Realistic Model Calculation
,”
Phys. Rev. Lett.
,
79
(
10
), pp.
1885
1888
.
26.
Bandow
,
S.
,
1997
, “
Radial Thermal Expansion of Purified Multiwall Carbon Nanotubes Measured by X-Ray Diffraction
,”
Jpn. J. Appl. Phys., Part 2
,
36
(
10B
), pp.
1403
1405
.
27.
Maniwa
,
Y.
,
Fujiwara
,
R.
,
Kira
,
H.
,
Tou
,
H.
,
Nishibori
,
E.
,
Takata
,
M.
,
Sakata
,
M.
,
Fujiwara
,
A.
,
Zhao
,
X.
,
Jijima
,
S.
, and
Ando
,
Y.
,
2001
, “
Multiwalled Carbon Nanotubes Grown in Hydrogen Atmosphere: A X-Ray Diffractionf Study
,”
Phys. Rev. B
,
64
(
7
), pp.
073105
-
1
.
28.
Yosida
,
Y.
,
2000
, “
High-Temperature Shrinkage of Single-Walled Carbon Nanotube Bundles up to 1600K
,”
J. Appl. Phys.
,
87
(
7
), pp.
3338
3341
.
29.
Maniwa
,
Y.
,
Fujiwara
,
R.
,
Kira
,
H.
,
Tou
,
H.
,
Kataura
,
H.
,
Suzuki
,
S.
,
Achiba
,
Y.
,
Nishibori
,
E.
,
Takata
,
M.
,
Sakata
,
M.
,
Fujiwara
,
A.
, and
Suematsu
,
H.
,
2001
, “
Thermal Expansion of Single-Walled Carbon Nanotube (SWNT) Bundles: X-Ray Diffraction Studies
,”
Phys. Rev. B
,
64
(
24
), pp.
241402
-
1
.
30.
Wei
,
C.
,
Srivastava
,
D.
, and
Cho
,
K.
,
2002
, “
Thermal Expansion and Diffusion Coefficients of Carbon Nanotube-Polymer Composites
,”
Nano Lett.
,
2
(
6
), pp.
647
650
.
31.
Raravikar
,
N. R.
,
Keblinski
,
P.
,
Rao
,
A. M.
,
Dresselhaus
,
M. S.
,
Schadler
,
L. S.
, and
Ajayan
,
P. M.
,
2002
, “
Temperature Dependence of Radial Breathing Mode Raman Frequency of Single-Walled Carbon Nanotubes
,”
Phys. Rev. B
,
66
(
23
), pp.
235424
-
1
.
32.
Tersoff
,
J.
,
1988
, “
New Empirical Approach for the Structure and Energy of Covalent Systems
,”
Phys. Rev. B
,
37
(
12
), pp.
6991
7000
.
33.
Brenner
,
D. W.
,
1990
, “
Empirical Potential for Hydrocarbons for Use in Simulating the Chemical Vapor Deposition of Diamond Films
,”
Phys. Rev. B
,
42
(
15
), pp.
9458
9471
.
34.
Billings, B. H., and Gray, D. E., 1972, American Institute of Physics Handbook, McGraw-Hill, New York.
35.
Chandler, D., 1987, Introduction to Modern Statistical Mechanics, Oxford University Press, Oxford.
36.
Saito, R., Dresselhaus, G., and Dresselhaus, M. S., 1998, Physical Properties of Carbon Nanotubes, Imperial College Press, London.
37.
Sanchez-Portal
,
D.
,
Artacho
,
E.
, and
Solar
,
J. M.
,
1999
, “
Ab Initio Structure, Elastic, and Vibrational Properties of Carbon Nanotubes
,”
Phys. Rev. B
,
59
(
19
), pp.
12678
12688
.
38.
Foiles
,
S. M.
,
1994
, “
Evaluation of Harmonic Methods for Calculating the Free Energy of Defects in Solids
,”
Phys. Rev. B
,
49
(
21
), pp.
14930
14938
.
You do not currently have access to this content.