We report atomistic studies of single-wall carbon nanotubes with very large aspect ratios subject to compressive loading. These long tubes display significantly different mechanical behavior than tubes with smaller aspect ratios. We distinguish three different classes of mechanical response to compressive loading. While the deformation mechanism is characterized by buckling of thin shells in nanotubes with small aspect ratios, it is replaced by a rod-like buckling mode above a critical aspect ratio, analogous to the Euler theory in continuum mechanics. For very large aspect ratios, a nanotube is found to behave like a flexible macromolecule which tends to fold due to vdW interactions between different parts of the carbon nanotube. This suggests a shell-rod-wire transition of the mechanical behavior of carbon nanotubes with increasing aspect ratios. While continuum mechanics concepts can be used to describe the first two types of deformation, statistical methods will be necessary to describe the dynamics of wire-like long tubes.

1.
Iijima
,
S.
,
1991
, “
Helical Microtubules of Graphitic Carbon
,”
Nature (London)
,
354
, p.
56
56
.
2.
Dresselhaus, M. S., Dresselhaus, G., and Eklund, P. C., 1996, Science of Fullerenes and Carbon Nanotubes, Academic Press, San Diego.
3.
Star
,
A.
,
Gabriel
,
J.-C. P.
,
Bradley
,
K.
, and
Gru¨ner
,
G.
,
2003
, “
Electronic Detection of Specific Protein Binding Using Nanotube FET Devices
,”
Nano Lett.
,
3
(
4
), pp.
459
463
.
4.
Gao
,
H.
,
Kong
,
Y.
,
Cui
,
D.
, and
Ozkan
,
C.
,
2003
, “
Spontaneous Insertion of DNA Oligonucleotides Into Carbon Nanotubes
,”
Nano Lett.
,
3
, pp.
471
473
.
5.
Yacobsen
,
B. I.
,
Brabec
,
C. J.
, and
Bernholc
,
J.
,
1996
, “
Nanomechanics of Carbon Tubes: Instabilities Beyond Linear Response
,”
Phys. Rev. Lett.
,
76
(
14
), p.
2511
2511
.
6.
Ozaki
,
T.
,
Iwasa
,
Y.
, and
Mitani
,
T.
,
2000
, “
Stiffness of Single-Walled Carbon Nanotubes Under Large Strain
,”
Phys. Rev. Lett.
,
84
(
8
), p.
1712
1712
.
7.
Dereli
,
G.
, and
Ozdogan
,
C.
,
2003
, “
Structural Stability and Energetics of Single-Walled Carbon Nanotubes Under Uniaxial Strain
,”
Phys. Rev. B
,
67
(
3
),
035416
035416
.
8.
Ru
,
C. Q.
,
2001
, “
Axially Compressed Buckling of a Doublewalled Carbon Nanotube Embedded in an Elastic Medium
,”
J. Mech. Phys. Solids
,
49
(
6
), pp.
1265
1279
.
9.
Ni
,
B.
,
Sinnott
,
S. B.
,
Mikulski
,
P. T.
, and
Harrison
,
J. A.
,
2002
, “
Compression of Carbon Nanotubes Filled With C-60, CH4, or Ne: Predictions From Molecular Dynamics Simulations
,”
Phys. Rev. Lett.
,
88
(
20
),
205505
205505
.
10.
Hod
,
O.
, and
Rabani
,
E.
,
2003
, “
Carbon Nanotube Closed-Ring Structures
,”
Phys. Rev. B
,
67
, p.
195408
195408
.
11.
Hertel
,
T.
,
Walkup
,
R. E.
, and
Avouris
,
P.
,
1998
, “
Deformation of Carbon Nanotubes by Surface van der Waals Forces
,”
Phys. Rev. B
,
58
, p.
13870
13870
.
12.
Zhang
,
P.
,
Huang
,
Y.
,
Gao
,
H.
, and
Hwang
,
K. C.
,
2002
, “
Fracture Nucleation in Single-Wall Carbon Nanotubes Under Tension: A Continuum Analysis Incorporating Interatomic Potentials
,”
J. Appl. Mech.
,
69
(
4
), pp.
454
458
.
13.
Abraham
,
F. F.
,
Walkup
,
R.
,
Gao
,
H.
,
Duchaineau
,
M.
,
de La Rubia
,
T.
, and
Seager
,
M.
,
2002
, “
Simulating Materials Failure by Using Up to One Billion Atoms and the World’s Fastest Computer: Work-Hardening
,”
Proceedings of the National Academy of Sciences of the United States of Americ (PNAS)
,
99
, pp.
5783
5787
.
14.
Allen, M., and Tildesley, D., 1989, Computer Simulation of Liquids, Oxford University Press.
15.
Tersoff
,
J.
,
1988
, “
New Empirical Approach for the Structure and Energy of Covalent Systems
,”
Phys. Rev. B
,
37
, p.
6991
6991
.
16.
Brenner
,
D. W.
,
1990
, “
Empirical Potential for Hydrocarbons for Use in Simulating the Chemical Vapor Deposition of Diamond Films
,”
Phys. Rev. B
,
42
, p.
9458
9458
.
17.
Landau, L. D., and Lifshitz, E. M., 1986, Elasticity Theory, Pergamon, Oxford.
18.
Allen, H., and Bulson, P., 1980, Background to Buckling, London, McGraw Hill.
19.
Timoshenko, S., and Gere, J., 1988, Theory of Elastic Stability, New York, McGraw-Hill.
20.
Feynman, R., Leyton, R., and Sands, M., 1964, The Feynman Lectures in Physics, 2, Addison-Wesley, Reading.
21.
Liu
,
H. J.
, and
Chan
,
C. T.
,
2002
, “
Properties of 4 Å Carbon Nanotubes From, First-Principle Calculations
,”
Phys. Rev. B
,
66
, pp.
115416
115416
.
22.
Marı´n
,
C.
,
Serrano
,
M. D.
,
Yao
,
N.
, and
Ostrogorsky
,
A. G.
,
2003
, “
Evidence for a Bundle of 4 Å Single-Walled Carbon Nanotubes
,”
Nanotechnology
,
14
(
3
), pp.
4
5
.
23.
Carr
,
S. M.
, and
Wybourne
,
M. N.
,
2003
, “
Elastic Instability of Nanomechanical Beams
,”
Appl. Phys. Lett.
,
82
(
5
), p.
709
709
.
24.
Roth
,
J.
,
Ga¨hler
,
F.
, and
Trebin
,
H.-R.
,
2000
, “
A Molecular Dynamics Run With 5.180.116.000 Particles
,”
Int. J. Mod. Phys. C
,
11
, pp.
317
322
.
25.
Stadler
,
J.
,
Mikulla
,
R.
, and
Trebin
,
H.-R.
,
1997
, “
IMD: A Software Package for Molecular Dynamics Studies on Parallel Computers
,”
Int. J. Mod. Phys. C
,
8
, pp.
1131
1140
.
26.
Buehler, M. J., Kong, Y., Gao, H., and Huang, Y., 2004, “Self-Folding and Unfolding of Carbon-Nanotubes,” Proceedings of ASME-IMECE 2004, November 13-19, 2004, Anaheim, CA, USA.
You do not currently have access to this content.