Dynamic compressive stress-strain curves at various strain rates of an Ethylene-Propylene-Diene Monomer Copolymer (EPDM) rubber have been determined with a modified split Hopkinson pressure bar (SHPB). The use of a pulse-shaping technique ensures that the specimen deforms at a nearly constant strain rate under dynamically equilibrated stress. The validity of the experiments was monitored by a high-speed digital camera for specimen edge deformation, and by piezoelectric force transducers for dynamic stress equilibrium. The resulting dynamic stress-strain curves for the EPDM indicate that the material is sensitive to strain rates and that the strain-rate sensitivity depends on the value of strain. Based on a strain energy function theory, a one-dimensional dynamic constitutive equation for this rubber was modified to describe the high strain-rate experimental results within the ranges of strain and strain rates presented in this paper.

1.
Zukas, J. A., Nicholas, T., Swift, H. F., Greszczuk, L. B., and Curran, D. R., 1992, Impact Dynamics, Krieger Publishing Company, Malabar, Florida.
2.
Clamroth
,
R.
,
1981
, “
Determination of Viscoelastic Properties by Dynamic Testing
,”
Polym. Test.
,
2
, pp.
263
286
.
3.
Harris
,
J. A.
,
1987
, “
Dynamic Testing Under Nonsinusoidal Conditions and the Consequences of Nonlinearity for Service Performance
,”
Rubber Chem. Technol.
,
60
, pp.
870
887
.
4.
Kolsky
,
H.
,
1949
, “
An Investigation of the Mechanical Properties of Materials at Very High Rates of Loading
,”
Proc. R. Soc. London, Ser. B
,
62
, pp.
676
700
.
5.
Gray, G. T., 2000, “Classic Split-Hopkinson Pressure Bar Testing,” Mechanical Testing and Evaluation, Metals Handbook, American Society for Metals, Materials Park, OH, 8, pp. 462–476.
6.
Chen
,
W.
,
Wu
,
Q.
,
Kang
,
J. H.
, and
Winfree
,
N. A.
,
2001
, “
Compressive Superelastic Behavior of a NiTi Shape Memory Alloy at Strain Rates of 0.001 to 750 s−1
,”
Int. J. Solids Struct.
,
38
, pp.
8989
8998
.
7.
Chen
,
W.
, and
Ravichandran
,
G.
,
1996
, “
Static and Dynamic Compressive Behavior of Aluminum Nitride Under Moderate Confinement
,”
J. Am. Ceram. Soc.
,
79
, pp.
579
584
.
8.
Chen
,
W.
, and
Ravichandran
,
G.
,
1997
, “
Dynamic Compressive Behavior of a Glass Ceramic Under Lateral Confinement
,”
J. Mech. Phys. Solids
,
45
, pp.
1303
1328
.
9.
Chen
,
W.
, and
Ravichandran
,
G.
,
2000
, “
Failure Mode Transition in Ceramics Under Dynamic Multiaxial Compression
,”
Int. J. Fract.
,
101
, pp.
141
159
.
10.
Ninan
,
L.
,
Tsai
,
J.
, and
Sun
,
C. T.
,
2001
, “
Use of Split Hopkinson Pressure Bar for Testing Off-Axis Composites
,”
Int. J. Impact Eng.
,
25
, pp.
291
313
.
11.
Chen
,
W.
, and
Zhou
,
B.
,
1998
, “
Constitutive Behavior of Epon 828/T-403 at Various Strain Rates
,”
Mech. Time-Depend. Mater.
,
2
, pp.
103
111
.
12.
Lu
,
H.
,
Tan
,
G. X.
, and
Chen
,
W.
,
2001
, “
Modeling of Constitutive Behavior for Epon 828/T-403 at Various Strain Rates
,”
Mech. Time-Depend. Mater.
,
5
, pp.
119
130
.
13.
Chen
,
W.
,
Zhang
,
B.
, and
Forrestal
,
M. J.
,
1999
, “
A Split Hopkinson Bar Technique for Low-Impedance Materials
,”
Exp. Mech.
,
39
, pp.
81
85
.
14.
Chen
,
W.
,
Lu
,
F.
, and
Zhou
,
B.
,
2000
, “
A Quartz Crystal Embedded Split Hopkinson Bar for Soft Materials
,”
Exp. Mech.
,
40
, pp.
1
6
.
15.
Chen
,
W.
,
Lu
,
F.
,
Frew
,
D. J.
, and
Forrestal
,
M. J.
,
2002
, “
Dynamic Compression Testing of Soft Materials
,”
ASME J. Appl. Mech.
,
69
, pp.
214
223
.
16.
Gamby
,
D.
, and
Chaoufi
,
J.
,
1991
, “
Asymptotic Analysis of Wave Propagation in a Finite Viscoplastic Bar
,”
Acta Mech.
,
87
, pp.
163
178
.
17.
Wang
,
L.
,
Labibes
,
K.
,
Azari
,
Z.
, and
Pluvinage
,
G.
,
1994
, “
Generalization of Split Hopkinson Bar Technique to Use Viscoelastic Bars
,”
Int. J. Impact Eng.
,
15
, pp.
669
686
.
18.
Zhao
,
H.
,
Gary
,
G.
, and
Klepaczko
,
J. R.
,
1997
, “
On the Use of a Viscoelastic Split Hopkinson Pressure Bar
,”
Int. J. Impact Eng.
,
19
, pp.
319
330
.
19.
Sawas
,
O.
,
Brar
,
N. S.
, and
Brockman
,
R. A.
,
1998
, “
Dynamic Characterization of Compliant Materials Using an All-Polymeric Split Hopkinson Bar
,”
Exp. Mech.
,
38
, pp.
204
210
.
20.
Davies
,
E. D. H.
, and
Hunter
,
S. C.
,
1963
, “
The Dynamic Compression Testing of Solids by the Method of the Split Hopkinson Pressure Bar
,”
J. Mech. Phys. Solids
,
11
, pp.
155
179
.
21.
Frew
,
D. J.
,
Forrestal
,
M. J.
, and
Chen
,
W.
,
2001
, “
A Split Hopkinson Bar Technique to Determine Compressive Stress-Strain Data for Rock Materials
,”
Exp. Mech.
,
41
, pp.
40
46
.
22.
Follansbee
,
P. S.
, and
Frantz
,
C.
,
1983
, “
Wave Propagation in the SHPB
,”
ASME J. Eng. Mater. Technol.
,
105
, pp.
61
66
.
23.
Gong
,
J. C.
,
Malvern
,
L. E.
, and
Jenkins
,
D. A.
,
1990
, “
Dispersion Investigation in the Split Hopkinson Pressure Bar
,”
ASME J. Eng. Mater. Technol.
,
112
, pp.
309
314
.
24.
Gary, G., Klepaczko, J. R., and Zhao, H., 1992, “Corrections for Wave Dispersion and Analysis of Small Strains With Split Hopkinson Bar,” Proceedings of the International Symposium of Impact Engineering, Sendai, Japan, pp. 73–78.
25.
Lifshitz
,
J. M.
, and
Leber
,
H.
,
1994
, “
Data Processing in the Split Hopkinson Pressure Bar Tests
,”
Int. J. Impact Eng.
,
15
, pp.
723
733
.
26.
Bacon
,
C.
,
1998
, “
An Experimental Method for Considering Dispersion and Attenuation in a Viscoelastic Hopkinson Bar
,”
Exp. Mech.
,
38
, pp.
242
249
.
27.
Dioh
,
N. N.
,
Leevers
,
P. S.
, and
Williams
,
J. G.
,
1993
, “
Thickness Effects in Split Hopkinson Pressure Bar Tests
,”
Polymer
,
34
, pp.
4230
4234
.
28.
Gray
,
G. T.
, III
,
Blumenthal
,
W. R.
,
Trujillo
,
C. P.
, and
Carpenter
,
R. W.
, II
,
1997
, “
Influence of Temperature and Strain Rate on the Mechanical Behavior of Adiprene L-100
,”
Journal de Physique IV France Colloque C3 (DYMAT 97)
,
7
, pp.
523
528
.
29.
Gray, G. T., and Blumenthal, W. R., 2000, “Split-Hopkinson Pressure Bar Testing of Soft Materials,” Mechanical Testing and Evaluation, Metals Handbook, American Society for Metals, Materials Park, Ohio, 8, pp. 488–496.
30.
Song, B., and Chen, W., 2003, “
Dynamic Stress Equilibrium on a Rubber Specimen During a Split Hopkinson Pressure Bar Experiment,” Exp. Mech. (submitted).
31.
Mooney
,
M.
,
1940
, “
A Theory of Large Elastic Deformation
,”
J. Appl. Phys.
,
11
, pp.
582
592
.
32.
Ward, I. M., 1983, Mechanical Properties of Solid Polymers, Second Edition, Wiley, New York.
33.
Spathis
,
G. D.
,
1991
, “
Polyurethane Elastomers Studied by the Mooney-Rivlin Equation for Rubbers
,”
J. Appl. Polym. Sci.
,
43
, pp.
613
620
.
34.
Chen, C., and Wang, Y., 1997, “An Extended Nonlinear Mechanical Model for Solid-Filled Mooney-Rivlin Rubber Composites,” Polymer, 38, pp. 571–576.
35.
Bergstrom
,
J. S.
, and
Boyce
,
M. C.
,
1998
, “
Constitutive Modeling of the Large Strain Time-Dependent Behavior of Elastomers
,”
J. Mech. Phys. Solids
,
46
, pp.
931
954
.
36.
Bergstrom
,
J. S.
, and
Boyce
,
M. C.
,
2001
, “
Constitutive Modeling of the Time-Dependent and Cyclic Loading of Elastomers and Application to Soft Biological Tissues
,”
Mech. Mater.
,
33
, pp.
523
530
.
37.
Chiem, C. Y., 1992, “Material Deformation at High Strain Rates,” Shock-Wave and High-Strain-Rate Phenomena in Materials, M. A. Meyers, L. E. Murr, and K. P. Staudhammer, eds., Marcel Dekker, New York, pp. 69–85.
38.
Wang, L. L., and Yang L. M., 1992, “A Class of Non-Linear Viscoelastic Constitutive Relation of Solid Polymeric Materials,” The Progress in Impact Dynamics, L. L. Wang, T. X. Yu, and Y. C. Li, eds., University of Science and Technology of China, Hefei, pp. 88–116.
39.
Yang
,
L. M.
,
Shim
,
V. P. W.
, and
Lim
,
C. T.
,
2000
, “
A Visco-Hyperelastic Approach to Modeling the Constitutive Behavior of Rubber
,”
Int. J. Impact Eng.
,
24
, pp.
545
560
.
40.
Whirley, R. G., 1991, DYNA3D: A Nonlinear, Explict, Three-Dimensional Finite Element Code for Solid and Structural Mechanics-User Manual, Lawrence Livermore National Laboratory, UCRL-MA-107254.
41.
Wu, X. J., and Gorham, D. A., 1997, “Stress Equilibrium in the Split Hopkinson Pressure Bar Test,” Journal de Physique IV France Colloque C3 (DYMAT 97), 7, pp. 91–96.
42.
Chen
,
W.
,
Lu
,
F.
, and
Winfree
,
N.
,
2002
, “
Dynamic Compressive Response of Polyurethane foams of Various Densities
,”
Exp. Mech.
,
42
, pp.
65
73
.
43.
Frew
,
D. J.
,
Forrestal
,
M. J.
, and
Chen
,
W.
,
2001
, “
Pulse-Shaping Techniques for Testing Brittle Materials With a Split Hopkinson Pressure Bar
,”
Exp. Mech.
,
42
, pp.
93
106
.
You do not currently have access to this content.