The forming of sheet metal into a desired and functional shape is a process, which requires an understanding of materials, mechanics, and manufacturing principles. Furthermore, producing consistent sheet metal components is challenging due to the non-linear interactions of various material and process parameters. One of the major causes for the fabrication of inconsistent sheet metal parts is springback, the elastic strain recovery in the material after the tooling is removed. In this paper, springback of a steel channel forming process is controlled using an artificial neural network and a stepped binder force trajectory. Punch trajectory, which reflects variations in material properties, thickness and friction condition, was used as the key control parameter in the neural network. Consistent springback angles were obtained in experiments using this control scheme.

1.
“Taking on the “Springback” Challenge,” 1995, United States Council for Automotive Research, fall newsletter.
2.
Karafillis
,
A. P.
, and
Boyce
,
M. C.
,
1996
, “
Tooling and Binder Design for Sheet Metal Forming Compensating Springback Error
,”
Int. J. Mach. Tools Manuf.
,
36
(
4
), pp.
503
526
.
3.
Ghouati, O., Joannic, D., and Genlin, J. C., 1998, “Optimization of Process Parameters for the Control of Springback in Deep Drawing,” NUMIFORM’98: Sixth International Conference on Numerical Methods in Industrial Forming Processes, Enschede, Netherlands, June 1998.
4.
Davies
,
R. G.
, and
Liu
,
Y. C.
, 1984, “Control of Springback in a Flanging Operation,” Journal of Applied Metalwork, 3(2), pp. 142–147.
5.
Marron
,
G.
, and
Bouhelier
,
C.
,
1995
, “
Bending of High Strength Steels. Prediction and Control of Springback
,”
Revue de Metallurgie, Cahiers d’Informations Techniques (France)
,
92
(
1
), pp.
121
130
.
6.
Tarau, M., Teodorescu, M., and Rusu, C., 1997, “Researches Regarding the Influence of Some Technological Factors Toward the Elastic Springback of Some Aluminum Alloys,” Annals of “Dunarea de Jos” University of Galati (Romania), 15, Fascicula V, Technologies in Machine Building, pp. 27–30.
7.
Song
,
N.
,
Qian
,
D.
,
Cao
,
J.
,
Liu
,
W.
,
Viswanathan
,
V.
, and
Li
,
S. F.
,
2001
, “
Effective Models for Prediction of Springback in Flanging
,”
ASME J. Engrg. Mat. and Tech.
,
123
, pp.
456
461
.
8.
Hu, Y., and Walters, G. N., 1999, “A Few Issues On Accuracy of Springback Simulation of Automobile Parts,” SAE Paper No. 1999-01-1000, SAE SP-1435.
9.
Shi, M. F., and Zhang, L., 1999 “Issues Concerning Material Constitutive Laws and Parameters in Springback,” SAE Paper No. 1999-01-1002, SAE SP-1435.
10.
Zhang, Z. T., Monette, D. G., Monroe, R. J., and Dailey, B. L., 1999 “Establishment of Stamping Process Windows,” SAE Paper No. 1999-01-0687, SAE SP-1435.
11.
Esche
,
S.
, and
Kinzel
,
G.
,
1998
, “
The Effect of Modeling Parameters and Bending on Two-Dimensional Sheet Metal Forming Simulation
,”
Adv. Ceram.
,
107
(
7
), pp.
74
85
.
12.
Li, K., and Wagoner, R. H., 1998, “Simulation of Springback,” Proceedings of Numiform ’98.
13.
Saran, M. J., and Demeri, M. Y., 1998, “Sensitivity of Forming Process to Selection of Variable Restraining Force Trajectory,” SAE Paper No. 982275, SAE SP-334.
14.
Stein, J. J., 1998, “The Effect of Process Variables on Sheet Metal Springback,” SAE Paper No. 982299, SAE SP-334.
15.
He, N., and Wagoner, R. H., 1996, “Springback Simulation in Sheet Metal Forming,” Proceedings of Numisheet ’96, pp. 308–15.
16.
Sunseri
,
M.
,
Cao
,
J.
,
Karafillis
,
A. P.
, and
Boyce
,
M. C.
,
1996
, “
Accommodation of Springback Error in Channel Forming Using Active Binder Force Control: Numerical Simulations and Results
,”
J. Eng. Mater. Technol.
,
118
(
3
), pp.
426
35
.
17.
Elkins
,
K. L.
, and
Sturges
,
R. H.
,
1999
, “
Springback Analysis and Control in Small Radius Air Bending
,”
J. Manuf. Sci. Eng.
,
121
(
4
), pp.
679
688
.
18.
Kinsey
,
B.
,
Cao
,
J.
, and
Solla
,
S.
,
2000
, “
Consistent and Minimal Springback Using a Stepped Binder Force Trajectory and Neural Network Control
,”
J. Eng. Mater. Technol.
,
122
, pp.
113
118
.
19.
Dunston
,
S.
,
Ranjithan
,
S.
, and
Bernold
,
E.
,
1996
, “
Neural Network Model for the Automated Control of Springback in Rebars
,”
IEEE Expert/Intelligent Systems & Their Applications
,
11
(
4
), pp.
45
49
.
20.
Inamdar
,
M.
,
Date
,
P. P.
,
Narasimhan
,
K.
,
Maiti
,
S. K.
, and
Singh
,
U. P.
, 2000, “Development of an Artificial Neural Network to Predict Springback in Air Vee Bending,” International Journal of Advanced Manufacturing Technology, 16(5), pp. 376–381.
21.
Kim
,
D. J.
, and
Kim
,
B. M.
,
1999
, “
Application of Neural Network and FEM for Metal Forming Processes
,”
Int. J. Mach. Tools Manuf.
,
40
(
6
), pp.
911
925
.
22.
Manabe
,
K.
,
Yang
,
M.
, and
Yoshihara
,
S.
,
1998
, “
Artificial Intelligence Identification of Process Parameters and Adaptive Control System for Deep-Drawing Process
,”
J. Mater. Process. Technol.
,
80–81
(
1
), pp.
421
426
.
23.
Ruffini, R., and Cao, J., 1998, “Using Neural Network for Springback Minimization in a Channel Forming Process,” Developments in Sheet Metal Stamping, SAE Paper 98M-154, SP-1322, pp. 77–85.
24.
ABAQUS, 1998, User’s Manual, Theory Manual, Version 5.8, Hibbit, Karlsson, and Sorensen, Providence, RI.
25.
Viswanathan, V., 2000, “Physical Implementation of Neural Network for Springback Control,” M. S. thesis, Northwestern University, Evanston, IL.
26.
Sejnowski, T. J., and Rosenberg, C. R., 1986, “Nettalk: A Parallel Network that Learns to Read Aloud,” Technical Report John Hopkins University, JHU/EECS-86/01.
27.
Vitek
,
J. M.
,
1999
, “
Neural Networks Applied to Welding: Two Examples
,”
ISIJ Int.
,
39
(
10
), pp.
1088
1095
.
28.
Bounds, D. G., Lloyd, P. J., Matthew, B., and Waddel, G., 1988, “A Multilayer Perceptron Network for the Diagnosis of Low Back Pain,” Proceedings of 2nd IEEE International Conference on Neural Networks, San Diego, CA, 2, pp. 481–489.
29.
Hornik
,
K.
,
Stinchcombe
,
M.
, and
White
,
H.
,
1989
, “
Multilayer Feedforward Networks are Universal Approximators
,”
Neural Networks
,
2
, pp.
359
366
.
30.
Rumelhart, D. E., and McClelland, J. L., 1986, “Learning Internal Representation by Error Propagation,” Parallel Distributed Processing, MIT Press, Cambridge, MA, 1, Chap. 8.
31.
Widrow, B., and Lher, M. A., 1990, “30 Years of Adaptive Neural Networks: Perceptron, Madaline and Backpropagation,” Proceedings of the IEEE, 78, (9), pp. 1415–1441.
You do not currently have access to this content.