In this study, a large number of creep tests were carried out using miniature specimens in order to investigate the creep behavior of 63Sn/37Pb eutectic solder alloy over a wide temperature range from −40 to 150°C and stress range from 0.75 to 70 MPa. Based on dislocation and diffusion theories, two unified constitutive models were developed to describe the dislocation-controlled and diffusion-controlled creep behaviors observed. It was found that the two models accurately predict the experimental data. A deformation mechanism map was established for this eutectic solder alloy in order to interpret the creep mechanism under different temperature and loading conditions.

1.
McCabe
,
R. J.
, and
Fine
,
M. E.
,
1998
, “
Athermal and Thermally Activated Plastic Flow in Low Melting Temperature Solders at Small Stresses
,”
Scr.
,
39
, pp.
189
195
.
2.
Kashyap
,
B. P.
, and
Murty
,
G. S.
,
1981
, “
Experimental Constitutive Relations for High Temperature Deformation of A Pb/Sn Eutectic Alloy
,”
Mater. Sci. Eng.
,
50
, pp.
205
213
.
3.
Pao
,
Y. H.
,
Badgley
,
S.
,
Jih
,
E.
,
Govila
,
R.
, and
Browning
,
J.
,
1993
, “
Constitutive Behavior and Low Cycle Thermal Fatigue of 97Sn-3Cu Solder Joints
,”
ASME J. Electron. Packag.
,
115
, pp.
147
152
.
4.
Wong
,
B.
,
Helling
,
D. E.
, and
Clark
,
R. W.
,
1988
, “
A Creep-Rupture Model for Two-Phase Eutectic Solders
,”
IEEE Trans. Compon., Hybrids, Manuf. Technol.
,
11
, pp.
284
290
.
5.
Knecht
,
S.
, and
Fox
,
L. R.
,
1990
, “
Constitutive Relation and Creep-Fatigue Life Model for Eutectic Tin-Lead Solder
,”
IEEE Trans. Compon., Hybrids, Manuf. Technol.
,
13
, pp.
424
433
.
6.
Hacke
,
P.
,
Sprecher
,
A. F.
, and
Conrad
,
H.
,
1993
, “
Computer Simulation of Thermo-Mechanical Fatigue of Solder Joints Including Microstructure Coarsening
,”
ASME J. Electron. Packag.
,
115
, pp.
153
158
.
7.
Syed
,
A. R.
,
1995
, “
Creep Crack Growth Prediction of Solder Joints During Temperature Cycling—An Engineering Approach
,”
ASME J. Electron. Packag.
,
117
, pp.
116
122
.
8.
Darveaux
,
R.
, and
Banerji
,
K.
,
1992
, “
Constitutive Relations for Tin-Based Solder Joints
,”
IEEE Trans. Compon., Hybrids, Manuf. Technol., Part A
,
15
, pp.
1013
1024
.
9.
Shi X. Q., Yang Q. J., Wang Z. P., Pang H. L. J., and Zhou W., 2000, “Reliability Assessment of PBGA Solder Joints Using the New Creep Constitutive Relationship and Modified Energy-Based Life Prediction Model,” IEEE/CPMT 3rd Electronics Packaging Technology Conference, pp. 398–405.
10.
Lau, J., 1991, Solder Joint Reliability—Theory and Applications, Van Nostrand Reinhold, New York.
11.
Lam
,
S. T.
,
Arieli
,
A.
, and
Mukherjee
,
A. K.
,
1979
, “
Superplastic Behavior of Pb-Sn Eutectic Alloy
,”
Mater. Sci. Eng.
,
40
, pp.
73
79
.
12.
Busso
,
E. P.
,
Kitano
,
M.
, and
Kumazawa
,
T.
,
1992
, “
A Visco-Plastic Constitutive Model for 60/40 Tin-Lead Solder Used in IC Package Joints
,”
ASME J. Eng. Mater. Technol.
,
114
, pp.
331
337
.
13.
Shi
,
X. Q.
,
Pang
,
H. L. J.
,
Zhou
,
W.
, and
Wang
,
Z. P.
,
2000
, “
Low Cycle Fatigue Analysis of Temperature and Frequency Effects in Eutectic Solder Alloy
,”
Int. J. Fatigue
,
22
, pp.
217
228
.
14.
Erickson
,
K. L.
,
Hopkins
,
P. L.
, and
Vianco
,
P. T.
,
1998
, “
Modeling the Solid-State Reaction Between Sn-Pb Solder and A Porous Substrate Coating
,”
J. Electron. Mater.
,
27
(
11
), pp.
1177
1192
.
15.
Pang
,
H. L. J.
,
Tan
,
K. H.
,
Shi
,
X. Q.
, and
Wang
,
Z. P.
,
2001
, “
Microstructure and Intermetallic Growth Effects on Shear and Fatigue Strength of Solder Joints Subjected to Thermal Cycling Aging
,”
Mater. Sci. Eng., A
,
307
, pp.
42
50
.
16.
Raeder
,
C. H.
,
Messler
,
R. W.
Jr.
, and
Coffin
,
L. F.
Jr.
,
1999
, “
Partially-Constrained Thermomechanical Fatigue of Eutectic Tin-Bismuth/Copper Solder Joints
,”
J. Electron. Mater.
,
28
(
9
), pp.
1045
1054
.
17.
Pang
,
H. L. J.
,
Tan
,
K. H.
,
Shi
,
X. Q.
, and
Wang
,
Z. P.
,
2001
, “
Thermal Cycling Aging Effects on Microstructural and Mechanical Properties of A Single PBGA Solder Joint Specimen
,”
IEEE Trans. Compon., Packag. Manuf. Technol., Part A
,
24
(
1
), pp.
10
15
.
18.
Meyers, M. A., and Chawla, K. K., 1984, Mechanical Metallurgy, Principles and Applications, Prentice-Hall, New Jersey.
19.
Shi
,
X. Q.
,
Zhou
,
W.
,
Pang
,
H. L. J.
, and
Wang
,
Z. P.
,
1999
, “
Effect of Temperature and Strain Rate on Mechanical Properties of 63Sn/37Pb Solder Alloy
,”
ASME J. Electron. Packag.
,
121
, pp.
179
185
.
20.
Vianco
,
P. T.
,
Burchett
,
S. N.
,
Neilsen
,
M. K.
,
Rejent
,
J. A.
, and
Frear
,
D. R.
,
1999
, “
Coarsening of the Sn-Pb Solder Microstructure in Constitutive Model-Based Predictions of Solder Joint Thermal Mechanical Fatigue
,”
J. Electron. Mater.
,
28
(
11
), pp.
1290
1298
.
21.
Frost, H. J., and Ashby, M. F., 1982, Deformation-Mechanism Maps—The Plasticity and Creep of Metals and Ceramics, Pergamon Press, New York.
22.
Shi
,
X. Q.
,
Wang
,
Z. P.
,
Zhou
,
W.
,
Pang
,
H. L. J.
, and
Yang
,
Q. J.
,
2002
,“
A New Creep Constitutive Model for Eutectic Solder Alloy
,”
ASME J. Electron. Packag.
,
124
(
2
), pp.
85
90
.
23.
Hertzberg, R. W., 1996, Deformation and Fracture Mechanics of Engineering Materials, John Wiley & Sons, New York.
24.
Ren, W., Qian, Z. F., and Liu, S., 1998, “Thermo-Mechanical Creep of Two Solder Alloys,” IEEE Proceedings of the 48th Electronic Components and Technology Conference, pp. 1431–1437.
25.
Jones
,
W. K.
,
Liu
,
Y. Q.
,
Zampino
,
M. A.
, and
Gonzalez
,
G. L.
,
1998
, “
Mechanical Properties of Pb/Sn Pb/In and Sn/In Solders
,”
Soldering & Surface Mount Technology
,
10
, pp.
37
41
.
You do not currently have access to this content.