Computer experiments were performed on simulated polycrystalline material samples that possess locally anisotropic microstructures to investigate stress intensity factor (K) variations and anisotropy along fronts of microcracks of different sizes. The anisotropic K, arising from inhomogeneous stresses in broken grains, was determined for planar microcracks by using a weight function-based numerical technique. It has been found that the grain-orientation-geometry-induced local anisotropy produces large variations in K along front of microcracks, when the crack size is of the order of few grain diameters. Synergetic effect of grain orientation and geometry of broken grains control K variations and evolution along the microcrack front. The K variations may diminish at large crack sizes, signifying a shift of K calculation to bulk stress dependence from local stress dependence. Local grain geometry and texture may lead to K anisotropy, producing unusually higher/lower K at a segment of the crack front. Either K variation or anisotropy cannot be ignored when assessing a microcrack.

1.
Ravichandran
,
K. S.
, and
Li
,
Xu-Dong
,
2000
, “
Fracture Mechanical Character of Small Cracks in Polycrystalline Materials: Concept and Numerical K Calculations
,”
Acta Mater.
,
48
, pp.
525
540
.
2.
Lankford
,
J.
,
1982
, “
The Growth of Small Fatigue Cracks in 7075-T6 Aluminum
,”
Fat. Eng. Mater. Struct.
,
5
, pp.
233
248
.
3.
Suresh
,
S.
,
1983
, “
Crack Deflection: Implications for the Growth of Long and Short Fatigue Cracks
,”
Metall. Mater. Trans. A
,
14A
, pp.
2375
2385
.
4.
The Short Fatigue Cracks, 1986, EGF Pub. 1. K. J., Miller and E. R. de los Rios, Mechanical Engineering Publication, London, UK.
5.
Small Fatigue Cracks, 1986, Proc. Int. Workshop on Small Fatigue Cracks, R. O. Ritchie and J. Lankford, eds., The Metallurgical Society of AIME, Warrendale, PA.
6.
Tokaji
,
K.
,
et al.
,
1986
, “
Limitations of Linear Elastic Fracture Mechanics in Respect to Small Fatigue Cracks and Microstructure
,”
Fat. Fract. Eng. Mater. Struct.
,
9
, pp.
1
14
.
7.
Ravichandran
,
K. S.
, and
Larsen
,
J. M.
,
1997
, “
Effects of Crack Aspect Ratio on the Behavior of Small Surface Cracks in Fatigue: Part II—Experiments on a Titanium (Ti-8Al) Alloy
,”
Metall. Mater. Trans. A
,
28A
, pp.
157
169
.
8.
Mu¨ller
,
C.
, and
Exner
,
H. E.
,
1998
, “
Influence of a Grain Size Gradient on the Profile and Propagation of Fatigue Cracks in Titanium
,”
Z. Metallkd.
,
89
, pp.
338
342
.
9.
Teng
,
N. J.
, and
Lin
,
T. H.
,
1995
, “
Elastic Anisotropy Effect of Crystals on Polycrystal Fatigue Crack Initiation
,”
ASME J. Eng. Mater. Technol.
,
117
, pp.
470
477
.
10.
Wu
,
M. S.
, and
Guo
,
J.
,
2000
Analysis of a Sector Crack in a Three-Dimensional Voronoi Polycrystal With Microstructure Stresses
,”
ASME J. Appl. Mech.
,
67
, pp.
50
58
.
11.
Li, Xu-Dong, and Ravichandran, K. S., 1999, “The Role of Grain-Induced Local Anisotropy on Stress Intensity Factor for Microstructurally-Small Cracks,” Small Fatigue Cracks: Mechanics and Mechanisms, K. S. Ravichandran, R. O. Ritchie, and Y. Murakami, eds., Elsevier Science Ltd., London, pp. 85–92.
12.
Nemat-Nasser, S., 1999, Micromechanics: Overall Properties of Heterogeneous Materials, 1st ed., Elsevier, New York.
13.
Kocks, U. F., Tome´, C. N., and Wenk, H.-R., 1998, Texture and Anisotropy: Preferred Orientations in Polycrystals and Their Effect on Materials Properties, Cambridge University Press.
14.
Anderson
,
M. P.
, et al.
,
1984
, “
Computer Simulation of Grain Growth—I. Kinetics
,”
Acta Metall.
,
32
, pp.
783
791
.
15.
Humphreys
,
F. J.
, and
Hatherly
,
M.
,
1992
, “
Modelling Mechanisms and Microstructures of Recrystallisation
,”
Mater. Sci. Technol.
,
8
, pp.
135
143
.
16.
Anderson
,
M. P.
,
Grest
,
G. S.
, and
Srolovitz
,
D. J.
,
1985
, “
Grain Growth in Three Dimension: A Lattice Model
,”
Scr. Metall.
,
19
, pp.
225
230
.
17.
Mehnert, K., and Klimanek, P., 1998, Proceedings of an International Conference on Texture, Sept. 1997, Clausthal, Germany, R. Schwarzer and H. J. Bunge, eds., Trans. Tech. Publications, CH-Aedermannsdorf.
18.
Okabe, A., Boots, B., and Sugihara, K., 1999, Spatial Tessellations Concepts and Applications of Voronoi Diagrams, John Wiley and Son, New York.
19.
Roe
,
R.-J.
, and
Krigbaum
,
W. R.
,
1964
, “
Description of Crystallite Orientation in Polycrystalline Materials Having Fiber Texture
,”
J. Chem. Phys.
,
40
, pp.
2608
2615
.
20.
Nye, J. F., 1985, Physical Properties of Crystals: Their Representation by Tensors and Matrices, Oxford Science Publications Ltd., Oxford, UK.
21.
Eshelby
,
J. D.
,
1957
, “
The Determination of elastic Field of an Ellipsoid and Related Problems
,”
Proc. R. Soc. London, Ser. A
,
241A
, pp.
376
396
.
22.
Kro¨ner
,
E.
,
1958
, “
Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls
,”
Z. Phys.
,
151
, pp.
504
518
.
23.
Kneer
,
G.
,
1965
, “
Uber die Berechnung der Elastizita¨tsmoduln vielkristalliner Aggregate mit Textur
,”
Phys. Status Solidi
,
9
, pp.
825
838
.
24.
Morris
,
P.
,
1970
, “
Elastic Constants of Polycrystals
,”
Int. J. Eng. Sci.
,
8
, pp.
49
61
.
25.
Li
,
Xu-Dong
,
2001
, “
Computer Identification of Structural Weaknesses in Locally Anisotropic Polycrystalline Materials
,”
ASME J. Eng. Mater. Technol.
,
123
, pp.
361
370
.
26.
Li
,
X.-D.
,
2002
, “
Numerical Correlation of Material Structure Weaknesses in Anisotropic Polycrystalline Materials
,”
Acta Mech.
,
155
, pp.
137
155
.
27.
Li
,
X.-D.
,
2002
, “
Numerical Assessment of Composite Structure Weaknesses in Short-Fiber Reinforced MMCs
,”
Mech. Mater.
,
34
, pp.
191
216
.
28.
Li
,
Xu-Dong
, 2002, “Computer Assessment of Material Structure Weaknesses in Polycrystalline Materials,” Arch. Appl. Mech., (in press).
29.
Tvergaard
,
V.
, and
Hutchinson
,
J. W.
,
1988
, “
Microcracking in Ceramics Induced by Thermal Expansion or Elastic Anisotropy
,”
J. Am. Ceram. Soc.
,
71
,
157
166
.
30.
Nozaki
,
H.
, and
Taya
,
M.
,
1997
, “
Elastic Fields in a Polygon-Shaped Inclusion With Uniform Eigenstrains
,”
ASME J. Appl. Mech.
,
64
, pp.
495
502
.
31.
Waldvogel
,
J.
,
1979
, “
The Newtonian Potential of Homogeneous Polyhedra
,”
Z. Angew. Math. Phys.
,
30
, pp.
388
398
.
32.
Rodin
,
G. J.
,
1996
, “
Eshelby’s Inclusion Problem for Polygons and Polyhedra
,”
J. Mech. Phys. Solids
,
44
, pp.
1977
1995
.
33.
Bueckner
,
H. F.
,
1970
, “
A Novel Principle for the Computation of Stress Intensity Factors
,”
Z. Angew. Math. Mech.
,
50
, pp.
529
546
.
34.
Oore
,
M.
, and
Burns
,
D. J.
,
1980
, “
Estimation of Stress Intensity Factor for Irregular Cracks Subjected to Arbitrary Normal Stress Field
,”
ASME J. Pressure Vessel Technol.
,
102
, pp.
202
211
.
35.
Desjardins
,
J. L.
,
Burns
,
D. J.
, and
Thompson
,
J. C.
,
1991
, “
A Weight Function Technique for Estimating Stress Intensity Factors for Cracks in High Pressure Vessels
,”
ASME J. Pressure Vessel Technol.
,
113
, pp.
10
21
.
36.
Beghini
,
M.
,
Bertini
,
L.
, and
Gentili
,
A.
,
1997
, “
An Explicit Weight Function for Semi-Elliptical Surface Cracks
,”
ASME J. Pressure Vessel Technol.
,
119
, pp.
216
223
.
37.
Zeng
,
X.-H.
, and
Ericsson
,
T.
,
1996
, “
Anisotropy of Elastic Properties in Various Aluminum-Lithium Sheet Alloys
,”
Acta Mater.
,
44
, pp.
1801
1812
.
38.
Simmons, G., and Wang, H., 1970, Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook, 2nd ed., The MIT Press, Cambridge, MA.
39.
Yang
,
S. W.
,
1985
, “
Elastic Constants of a Monocrystalline Nickel-Based Superalloy
,”
Metall. Mater. Trans. A
,
16
, pp.
661
665
.
40.
Bunge
,
H. J.
,
Kiewel
,
R.
,
Reinert
,
Th
, and
Fritsche
,
L.
,
2000
, “
Elastic Properties of Polycrystals—Influence of Texture and Stereology
,”
J. Mech. Phys. Solids
,
48
, pp.
29
66
.
You do not currently have access to this content.