A stochastic dislocation dynamics (SDD) model is developed to investigate dislocation glide through dispersed obstacles. The model accounts for: 1) the dynamics of the flight process between successive meta-stable dislocations under various drag mechanism using discrete dislocation dynamics, and 2) thermal activation processes for meta-stable pinned dislocations using a stochastic force. The integration of the two processes allows one to examine the transient regime of dislocation motion between obstacle-controlled motion and drag-controlled motion. Result pertaining to the stress-strain rate behavior in copper are obtained. The stress and temperature dependence of the average dislocation velocity show obstacle-controlled region below the critical resolved shear stress (CRSS) and drag controlled region above the CRSS, which is in good qualitative agreement with experimental data. In the transient region right below the CRSS, negative temperature sensitivity is observed due to the competition between the drag effects in dislocation flight process and thermal activation process.

1.
Kubin
,
L. P.
,
Canova
,
G.
,
Condat
,
M.
,
Devincre
,
B.
,
Pontikis
,
V.
, and
Brechet
,
Y.
,
1992
, “
Microstructures in two dimensions: I. relaxed structures, modeling simulation
,”
Mater. Sci. Eng.
,
1
, pp.
1
17
.
2.
Zbib
,
H. M.
,
Rhee
,
M.
, and
Hirth
,
J. P.
,
1998
, “
On plastic defomation and the dynamics of 3D dislocation
,”
Int. J. Mech. Sci.
,
40
, pp.
113
127
.
3.
Rhee
,
M.
,
Zbib
,
H. M.
, and
Hirth
,
J. P.
,
1998
, “
Models for Long/Short Range Interactions in 3D Dislocation Simulation
,”
Modell. Simul. Mater. Sci. Eng.
,
6
, pp.
467
492
.
4.
Ghoniem
,
N. M.
,
Tong
,
S. H.
, and
Sun
,
L. Z.
,
2000
, “
Parametric dislocation dynamics: A thermodynamics-based approach to investigations of mesoscopic plastic deformation
,”
Phys. Rev. B
,
61
, pp.
913
927
.
5.
Schwarz
,
K. W.
,
1999
, “
Simulation of Dislocations on the Mesoscopic Scale, I Methods and Examples
,”
J. Appl. Phys.
,
85
, pp.
108
108
.
6.
Diaz de la Rubia
,
T.
,
Zbib
,
H. M.
,
Khraishi
,
T. A.
,
Wirth
,
B. D.
,
Victoria
,
M.
, and
Caturla
,
M. J.
,
2000
, “
Plastic Flow Localization in Irradiated Materials: A Multiscale Modeling Approach
,”
Nature (London)
,
406
, pp.
871
874
.
7.
Hiratani
,
M.
, and
Nadgorny
,
E. M.
,
2001
, “
Combined model of dislocation motion with thermally activated and drag-dependent stages
,”
Acta Mater.
,
40
, pp.
4337
4346
.
8.
Hiratani, M., and Zbib, H. M., 2001, “Modeling of thermally activated dislocation glide: The effects of thermal process and local obstacles,” MRS 2001 Spring Meeting Proceedings, San Francisco, CA, pp. BB 5.8.
9.
Landau
,
A. I.
,
1975
, “
Thermally activated motion of a dislocation through a random array of point obstacles
,”
Phys. Status Solidi A
,
30
, pp.
659
659
.
10.
Ronnpagel
,
D.
,
Streit
,
T.
, and
Pretorius
,
T.
,
1993
, “
Including Thermal Activation in Simulation Calculations of Dislocation Glide
,”
Phys. Status Solidi A
,
135
, pp.
445
454
.
11.
Naess
,
S. N.
,
Adland
,
H. M.
,
Mikkelsen
,
A.
, and
Elgsaeter
,
A.
,
2001
, “
Brownian dynamics simulation of rigid bodies and segmented polymer chains. Use of Cartesian rotation vectors as the generalized coordinates describing angular orientations
,”
Physica A
,
294
, pp.
323
339
.
12.
Raabe
,
D.
,
1998
, “
Introduction of a hybrid model for the discrete 3D simulation of dislocation dynamics
,”
Comput. Mater. Sci.
,
11
, pp.
1
15
.
13.
Al’shitz, V. I., 1992, “The Phonon Dislocation Interaction and its Role in Dislocation Dragging and Thermal Resistivity,” in Elastic Strain and Dislocation Mobility, 31, Modern Problems in Condensed Matter Sciences, V. L. Indenbom and J. Lothe, eds. North-Holland, Amsterdam.
14.
Ashcroft, N. W., and Mermin, N. D., 1976, Solid State Physics, Saunders College.
15.
McKrell
,
T. J.
, and
Galligan
,
J. M.
,
2000
, “
Instantaneous dislocation velocity in iron at low temperature
,”
Scr. Mater.
,
42
, pp.
79
82
.
16.
Jinpeng
,
C.
,
Bulatov
,
V. V.
, and
Yip
,
S.
,
1999
, “
Molecular dynamics study of edge dislocation motion in a bcc metal
,”
J. Comput.-Aided Mater. Des.
,
6
, pp.
165
173
.
17.
Risken, H., 1989, The Fokker-Planck Equation, 2nd ed. Springer-Verlag, New York, pp. 14–25.
18.
Allen, M. P. and Tildesley, D. J., 1987, Computer Simulation of Liquids, Oxford Science Publications, pp. 259–264.
19.
Hiratani, M., Zbib, H. M., and Wirth, B. D., 2001, “Interaction of complete and truncated stacking fault tetrahedra with glissile dislocations in irradiated metals,” Philos. Mag., submitted.
20.
Nadgorny, E., 1988, Dislocation Dynamics and Mechanical Properties of Crystals, Vol. 31, Oxford; Pergamon Press.
21.
Labush
,
R.
,
1977
, “
Statistical theory of dislocation configuration in a random array of point obstacles
,”
J. Appl. Phys.
,
48
, pp.
4550
4556
.
22.
Zaitsev
,
S. I.
,
1992
, “
Robin Hood as Self-Organized Criticality
,”
Physica A
,
189
, pp.
411
416
.
23.
Dai
,
Y.
, and
Victoria
,
M.
,
1997
, “
Defect Structures in Deformed F.C.C. Metals
,”
Acta Mater.
,
45
, pp.
3495
3501
.
24.
Hirth, J. P. and Lothe, J., 1982, Theory of Dislocations, 2nd ed., Wiley, New York.
25.
Wirth, B. D., Bulatov, V. V., and Diaz de la Rubia, T., 2001, “Atomistic Simulation of Dislocation-Defect Interactions in Cu,” MRS 2001 Spring Meeting Proceedings, San Francisco, CA, pp. R3.27.
26.
Ghoniem
,
N. M.
, and
Tong
,
S. H.
,
2001
, “
On dislocation interaction with radiation-induced defect clusters nd plastic flow localization in fcc metals
,”
Philos. Mag.
,
81
, pp.
2743
2764
.
27.
Yasin
,
H.
,
Zbib
,
H. M.
, and
Khaleel
,
M. A.
,
2001
, “
Size and Boundary Effects in Discrete Dislocation Dynamics: Coupling with Continuum Finite Element
,”
Mater. Sci. Eng., A
,
309–310
, pp.
294
299
.
28.
Zbib
,
H. M.
,
Diaz de la Rubia
,
T.
, and
Bulatov
,
V. V.
,
2002
, “
A Multiscale Model of Plasticity Based on iscrete Dislocation Dynamics
,”
ASME J. Eng. Mater. Technol.
,
124
, pp.
78
87
.
29.
Swaminarayan
,
S.
, and
LeSar
,
R.
,
2001
, “
A Monte Carlo method for simulating dislocation microstructures in three dimensions
,”
Comput. Mater. Sci.
,
21
, pp.
339
359
.
30.
Zbib, H. M., and Diaz de la Rubia, T., 2002, “Multiscale Model of Plasticity,” Int. J. Plast. in press.
31.
Zhou
,
S. J.
,
Preston
,
D. L.
, and
Louchet
,
F.
,
1999
, “
Investigation of vacancy formation by a jogged dissociated dislocation with large-scale molecular dynamics and dislocation energetics
,”
Acta Mater.
,
47
, pp.
2695
2703
.
32.
Caturla
,
M. J.
,
Soneda
,
N.
,
Alonso
,
E.
,
Wirth
,
B. D.
,
Diaz de La Rubia
,
T.
, and
Perlado
,
J. M.
,
2000
, “
Comparative study of radiation damage accumulation in Cu and Fe
,”
J. Nucl. Mater.
276
, pp.
13
21
.
You do not currently have access to this content.