The mechanical behavior of different types of polycrystalline materials shows many common features in the ductile inelastic flow regime. It is typically controlled by dislocations motion, which involves the competitive action of hardening and recovery processes that induces a strong dependency upon mechanical history. The object of this paper is to show how a constitutive model, named SUVIC, can be used to describe and predict in a unified manner the inelastic response of various types of materials. For that purpose, the authors use laboratory test results obtained on alkali halides (NaCl) and on metallic alloys (Inconel 738LC and A508 steel) at different homologous temperatures.

1.
Frost, H. J., and Ashby, M. F., 1982, Deformation mechanism maps-The plasticity and creep of metals and ceramics, Pergamon Press.
2.
Poirier, J. P., 1985, Creep of crystals-High temperature deformation processes in metals, ceramics and minerals, Cambridge University Press, Cambridge.
3.
Aubertin
,
M.
,
Gill
,
D. E.
, and
Ladanyi
,
B.
,
1991
, “
A unified viscoplastic model for the inelastic flow of alkali halides
,”
Mech. Mater.
,
11
, pp.
63
82
.
4.
Miller, A. K., (ed.) 1987, Unified Constitutive Equations for Creep and Plasticity, Elsevier Applied Science, Amsterdam.
5.
Krauz A. S., and Krausz, K., (eds.) 1996, Unified Constitutive Laws of Plastic Deformation, Academic Press, San Diego.
6.
Aubertin, M., 1996, “On the physical origin and modeling of kinetic and isotropic hardening of salt,” Proc. 3rd Conf. on the Mechanical Behavior of Salt, Paris, 1993, Trans. Tech. Pub., Clausthal-Zellerfeld, pp. 3–17.
7.
Aubertin
,
M.
,
Julien
,
M. R.
,
Servant
,
S.
, and
Gill
,
D. E.
,
1999
, “
A rate dependent model for the ductile behavior of salt rocks
,”
Can. Geotech. J.
,
36
, pp.
660
674
.
8.
Aubertin
,
M.
,
Yahya
,
O. M. L.
, and
Julien
,
M. R.
,
1999
, “
Modeling mixed hardening of alkali halides with a modified viscoplastic model
,”
Int. J. Plast.
,
15
, pp.
1067
1088
.
9.
Yahya
,
O. M. L.
,
Aubertin
,
M.
, and
Julien
,
M.
,
2000
, “
A unified representation of plasticity, creep and relaxation behavior of rocksalt
,”
Int. J. Rock Mech. Min. Sci.
,
37
, pp.
787
800
.
10.
Julien, M. R., 1999, “Une mode´lisation constitutive et nume´rique du comportement me´canique du sel gemme,” Ph.D. thesis, Ecole Polytechnique de Montre´al.
11.
Aubertin
,
M.
,
Gill
,
D. E.
, and
Ladanyi
,
B.
,
1991b
, “
An internal variable model for the creep of rocksalt
,”
Rock Mechanics and Rock Engineering
,
24
, pp.
81
97
.
12.
Aubertin
,
M.
, and
Simon
,
R.
,
1997
, “
A damage initiation criterion for low porosity rocks
,”
Int. J. Rock Mech. Min. Sci.
,
34
,
3
4
.
13.
Aubertin, M., Julien, M. R., and Li, L. 1998b, “The semi-brittle behavior of low porosity rocks,” Keynote lecture, Proc. NARMS’98, 3rd North American Rock Mechanics Symposium, Cancun, Mexico, Vol. 2, pp. 65–90.
14.
Senseny
,
P. E.
,
Brodsky
,
N. S.
, and
De Vries
,
K. L.
,
1993
, “
Parameter evaluation for a unified constitutive model
,”
ASME J. Eng. Mater. Technol.
,
115
, pp.
157
162
.
15.
Pilvin, P., 1988, “Approaches multie´chelles pour la pre´vision du comportement ane´lastique des me´taux,” Ph.D. thesis, Universite´ Paris VI, France.
16.
Cailletaud, G., and Pilvin, P., 1994, “Identification and inverse problems related to material behavior,” Inverse Problems in Engineering Mechanics, Bui, Tanaka et al. eds., Balkema, Rotterdam, pp. 79–86.
17.
Ziebs, J., Meersmann, J., and Kuhn, H. J., 1992, “Effects of proportional and nonproportional straining sequences on hardening/softening behavior of IN738 LC at elevated temperatures,” Proc. Int. Seminar, Mecamat, Cachan, France, pp. 224–255.
18.
Yahya, O. M. L., 1997, “Approche locale de la rupture fragile intergranulaire de l’acier 16MND5,” Ph.D. thesis, Ecole des Mines de Paris, France.
19.
Yahya
,
O. M. L.
,
Borit
,
F.
,
Piques
,
R.
, and
Pineau
,
A.
,
1997
, “
Statistical modeling of intergranular brittle fracture in a low alloy steel
,”
Fatigue Fract. Eng. Mater. Struct.
,
21
, pp.
1485
1502
.
20.
Evans
,
R. W.
, and
Harrison
,
G. F.
,
1976
, “
The development of a universal equation for secondary creep rates in pure metals and engineering alloys
,”
Met. Sci.
,
10
, pp.
307
313
.
21.
Benallal
,
A.
, and
Marquis
,
D.
,
1987
, “
Constitutive equations describing non-proportional cyclic elasto-viscoplasticity
,”
ASME J. Eng. Mater. Technol.
,
109
, pp.
326
336
.
22.
Chaboche
,
J.
,
1989
, “
Constitutive equations for cyclic plasticity and cyclic viscoplasticity
,”
Int. J. Plast.
,
5
, pp.
247
302
.
23.
Chaboche
,
J. L.
, and
Nouailhas
,
D.
,
1989
, “
A unified constitutive model for cyclic viscoplasticity and its application to various stainless steels
,”
ASME J. Eng. Mater. Technol.
,
111
, pp.
424
430
.
24.
Chaboche, J. L., 1996, “Unified Cyclic Viscoplastic Constitutive Equations: Development, Capabilities and Thermodynamic Framework,” Unified Constitutive laws of Plastic Deformation, A. S. Krausz and K. Krausz, eds., pp. 1–68, Academic Press, San Diego.
25.
Argon
,
A. S.
, and
Battacharya
,
A. K.
,
1987
, “
Primary creep in nickel: experiments and theory
,”
Acta Metall.
,
35
, pp.
1499
1514
.
26.
Miller
,
A. K.
,
1976
, “
An inelastic constitutive model for monotonic, cyclic and creep deformation: Part I-Equations development and analytical procedures
,”
ASME J. Eng. Mater. Technol.
,
98
, pp.
97
105
.
27.
Freed
,
A. D.
, and
Walker
,
K. P.
,
1995
, “
Viscoplastic model development with an eye toward characterization
,”
ASME J. Eng. Mater. Technol.
,
117
, pp.
8
13
.
28.
Raj, S. V., Iskovitz, I. S., and Freed, A. D., 1996 “Modeling the role of dislocation substructure during class M and exponential creep,” Unified Constitutive laws of Plastic Deformation, A S. Krausz and K. Krausz, eds., Academic Press, San Diego, pp. 343–439.
29.
Brown
,
A. M.
, and
Ashby
,
M. F.
,
1980
, “
On the power-law creep equation
,”
Scr. Metall.
,
14
, pp.
1297
1302
.
You do not currently have access to this content.