In stamping, operating costs are dominated by raw material costs, which can typically reach 75 percent of total costs in a stamping facility. In this paper, material utilization efficiency is modeled by considering two primary sources of scrap: material cut away from the exterior of each blank on the strip and off-cuts of unusable narrow strips generated when wide master coils are slit into strips for subsequent stamping. Based on these, layout optimization techniques for minimizing raw material usage are described that predict the optimal blank orientation on the strip and the optimum slitting width for the strip. In addition, methods are given for determining optimal common strip widths for multiple parts, both for dependent and independent demand. These algorithms are ideally suited for incorporation into die design CAE systems.

1.
Industry Canada, 1998, “Industry Overview Reports: SIC-E 3253—Motor Vehicle Stampings Industry,” Ottawa, Canada, November 22.
2.
Cheok
,
B. T.
, and
Nee
,
A. Y. C.
,
1998
, “
Configuration of Progressive Dies
,”
Artificial Intelligence for Engineering Design, Analysis and Manufacturing
,
12
, pp.
405
418
.
3.
Cheok
,
B. T.
,
Foong
,
K. Y.
, and
Nee
,
A. Y. C.
,
1996
, “
An Intelligent Planning Aid for the Design of Progressive Dies
,”
Proc. Inst. Mech. Eng.
,
210, Part B
, pp.
25
35
.
4.
Choi
,
J. C.
,
Kim
,
B. M.
,
Cho
,
H. Y.
, and
Kim
,
C.
,
1998
, “
A Compact and Practical CAD System for Blanking or Piercing of Irregular-Shaped Metal Products and Stator and Rotor Parts
,”
Int. J. Mach. Tools Manuf.
,
38
, pp.
931
963
.
5.
Huang
,
K.
,
Ismail
,
H. S.
, and
Hon
,
K. K. B.
,
1996
, “
Automated Design of Progressive Dies
,”
Proc. Inst. Mech. Eng.
,
210, Part B
, pp.
367
376
.
6.
Ismail
,
H. S.
,
Chen
,
S. T.
, and
Hon
,
K. K. B.
,
1996
, “
Feature-Based Design of Progressive Press Tools
,”
Int. J. Mach. Tools Manuf.
,
36
, pp.
367
378
.
7.
Lin
,
Z. C.
, and
Hsu
,
C. Y.
,
1996
, “
An Investigation of an Expert System for Shearing Cut Progressive Die Design
,”
International Journal of Advanced Manufacturing Technology
,
11
, pp.
1
11
.
8.
Lu, W., Weidong, Z., and Lihua, T., 1993, “A CAD/CAM System for Multiple-Step Precision Progressive Dies,” Advanced Technology of Plasticity 1993—Proceedings of the Fourth International Conference on Technology of Plasticity, pp. 1710–1715.
9.
Prasad
,
Y. K. D. V.
, and
Somasundaram
,
S.
,
1992
, “
CADDS: An Automated Die Design System for Sheet-Metal Blanking
,”
Computing and Control Engineering Journal
,
3
, July, pp.
185
191
.
10.
Singh
,
R.
, and
Sekhon
,
G. S.
,
1998
, “
A Low-Cost Modeller for Two-Dimensional Metal Stamping Layouts
,”
J. Mater. Process. Technol.
,
84
, pp.
79
89
.
11.
Adamowicz
,
M.
, and
Albano
,
A.
,
1976
, “
Nesting Two-Dimensional Shapes in Rectangular Modules
,”
Computer Aided Design
,
8
, pp.
27
33
.
12.
Nee
,
A. Y. C.
,
1984
, “
Computer Aided Layout of Metal Stamping Blanks
,”
Proceedings of the Institution of Mechanical Engineers, Part B
,
198
, No.
10
, pp.
187
194
.
13.
Martin
,
R. R.
, and
Stephenson
,
P. C.
,
1988
, “
Putting Objects into Boxes
,”
Computer Aided Design
,
20
, pp.
506
514
.
14.
Qu
,
W.
, and
Sanders
,
J. L.
,
1987
, “
A Nesting Algorithm for Irregular Parts and Factors Affecting Trim Losses
,”
Int. J. Prod. Res.
,
25
, pp.
381
397
.
15.
Chow
,
W. W.
,
1979
, “
Nesting of a Single Shape on a Strip
,”
Int. J. Prod. Res.
,
17
, pp.
305
322
.
16.
Dori
,
D.
, and
Ben Bassat
,
M.
,
1984
, “
Efficient Nesting of Congruent Convex Figures
,”
Commun. ACM
,
27
, pp.
228
235
.
17.
Karoupi
,
F.
, and
Loftus
,
M.
,
1991
, “
Accommodating Diverse Shapes within Hexagonal Pavers
,”
Int. J. Prod. Res.
,
29
, pp.
1507
1519
.
18.
Nee
,
A. Y. C.
,
1984
, “
A Heuristic Algorithm for Optimum Layout of Metal Stamping Blanks
,”
Annals of the CIRP
,
33
, pp.
317
320
.
19.
Prasad
,
Y. K. D. V.
, and
Somasundaram
,
S.
,
1991
, “
CASNS: An Algorithm for Nesting of Metal Stamping Blanks
,”
Computer Aided Engineering Journal
,
8
, pp.
69
73
.
20.
Prasad
,
Y. K. D. V.
,
Somasundaram
,
S.
, and
Rao
,
K. P.
,
1995
, “
A Sliding Algorithm for Optimal Nesting of Arbitrarily Shaped Sheet Metal Blanks
,”
Int. J. Prod. Res.
,
33
, pp.
1505
1520
.
21.
Jain
,
P.
,
Feynes
,
P.
, and
Richter
,
R.
,
1992
, “
Optimal Blank Nesting Using Simulated Annealing
,”
ASME J. Mech. Des.
,
114
, pp.
160
165
.
22.
Theodoracates
,
V. E.
, and
Grimsley
,
J. L.
,
1995
, “
The Optimal Packing of Arbitrarily-Shaped Polygons using Simulated Annealing and Polynomial-Time Cooling Schedules
,”
Comput. Methods Appl. Mech. Eng.
,
125
, pp.
53
70
.
23.
Ismail
,
H. S.
, and
Hon
,
K. K. B.
,
1992
, “
New Approaches for the Nesting of Two-Dimensional Shapes for Press Tool Design
,”
Int. J. Prod. Res.
,
30
, pp.
825
837
.
24.
Joshi
,
S.
, and
Sudit
,
M.
,
1994
, “
Procedures for Solving Single-Pass Strip Layout Problems
,”
IIE Transactions
,
26
, pp.
27
37
.
25.
Nye
,
T. J.
,
2000
, “
Stamping Strip Layout for Optimal Raw Material Utilization
,”
Journal of Manufacturing Systems
,
19
, No. 4, pp
239
248
.
26.
de Berg, M., Van Kreveld, M., Overmars, M., and Schwarzkopf, O., 1997, Computational Geometry: Algorithms and Applications, Springer, Berlin.
27.
O’Rourke, J., 1994, Computational Geometry in C, Cambridge University Press, Cambridge.
You do not currently have access to this content.