The sensitivity method is employed in this work in order to find initial blank shapes which result in desired shapes after deformation. By assuming the final deformation shape be the drawn cup with uniform trimming allowance at the flange, the corresponding initial blank which gives the desired final shape after deformation has been found. With the aid of a well-known dynamic explicit analysis code PAM-STAMP, shape sensitivity has been obtained. To get the shape sensitivity numerically, a couple of deformation processes have been analyzed. Drawings of trapezoidal cup, oil pan, and Audi front door panel, the benchmark test problem of Numisheet ’99, have been chosen as the examples. In every case the optimal blank shape has been obtained after only a few modifications without a predetermined deformation path. With the predicted optimal blank, both computer simulation and experiment are performed. Excellent agreements are obtained between simulation and experiment in every case. Through this investigation, the sensitivity method is found to be very effective in the design of arbitrary shaped drawing processes.

1.
Gloeckl, H., and Lange, K., 1983, “Computer aided design of blanks for deep drawn irregular shaped components,” Proc. 11th NAMRC, pp. 243–251.
2.
Vogel
,
J. H.
, and
Lee
,
D.
,
1990
, “
An analytical method for deep drawing process designs
,”
Int. J. Mech. Sci.
,
32
, pp.
891
907
.
3.
Chen
,
X.
, and
Sowerby
,
R.
,
1992
, “
The development of ideal blank shapes by the method of plane stress characteristics
,”
Int. J. Mech. Sci.
,
2
, pp.
159
166
.
4.
Chen
,
X.
, and
Sowerby
,
R.
,
1996
, “
Blank development and the prediction of earing in cup drawing
,”
Int. J. Mech. Sci.
,
8
, pp.
509
516
.
5.
Kuwabara
,
T.
, and
Si
,
W. H.
,
1997
, “
PC-based blank design system for deep-drawing irregularly shaped prismatic shells with arbitrarily shaped flange
,”
J. Mater. Process. Technol.
,
63
, pp.
89
94
.
6.
Sowerby
,
R.
,
Duncan
,
J. L.
, and
Chu
,
E.
,
1986
, “
The modeling of sheet metal stampings
,”
Int. J. Mech. Sci.
,
28
, pp.
415
430
.
7.
Blount
,
G. N.
, and
Fischer
,
B. V.
,
1995
, “
Computerized blank shape prediction for sheet metal components having doubly-curved surfaces
,”
Int. J. Prod. Res.
,
33
, pp.
993
1005
.
8.
Toh
,
C. H.
, and
Kobayashi
,
S.
,
1985
, “
Deformation analysis and blank design in square cup drawing
,”
Int. J. Mech. Sci.
,
25
, pp.
15
32
.
9.
Kim
,
N.
, and
Kobayashi
,
S.
,
1986
, “
Blank design in rectangular cup drawing by an approximate method
,”
Int. J. Mach. Tool Des. Res.
,
26
, pp.
125
135
.
10.
Guo
,
Y. Q.
,
Batoz
,
J. L.
,
Detraux
,
J. M.
, and
Duroux
,
P.
,
1990
, “
Finite element procedures for strain estimations of sheet metal forming parts
,”
Int. J. Numer. Methods Eng.
,
30
, pp.
1385
1401
.
11.
Iseki
,
H.
, and
Sowerby
,
R.
,
1995
, “
Determination of the optimal blank shape when deep drawing nonaxisymmetric cups using a finite element method
,”
JSME Int. J., Ser. A
,
38
, pp.
473
479
.
12.
Barlat, O., Batoz, J. L., Guo, Y. Q., Mercier, F., Naceur, H., and Knopf-Lenoir, C., 1996, “Optimum blank design of blank contours using the inverse approach and a mathematical programming technique,” Proc. Numisheet’96, pp. 178–185.
13.
Lee
,
C. H.
, and
Huh
,
H.
,
1997
, “
Blank design and strain prediction of automobile stamping parts by an inverse finite element approach
,”
J. Mater. Process. Technol.
,
63
, pp.
645
650
.
14.
Barlat
,
F.
,
Chung
,
K.
, and
Richmond
,
O.
,
1994
, “
Anisotropic plastic potentials for polycrystals and application to the design of optimum blank shapes in sheet forming
,”
Metall. Mater. Trans. A
,
25A
, pp.
1209
1216
.
15.
Kim
,
S. D.
,
Park
,
M. H.
,
Kim
,
S. J.
, and
Seo
,
D. G.
,
1998
, “
Blank design and formability for non-circular deep drawing processes by the finite element method
,”
J. Mater. Process. Technol.
,
75
, pp.
94
99
.
16.
Kim
,
D. H.
,
Lee
,
J. M.
,
Park
,
S. H.
,
Yang
,
D. Y.
, and
Kim
,
Y. H.
,
1997
, “
Blank design system for sheet forming
,”
J. Korean Society for Tech. Plasticity
,
6
, pp.
400
407
.
17.
Xueshan
,
L.
, and
Bingwen
,
L.
,
1986
, “
Modeling of flange deformation of irregular drawn cups using a fluid analogy
,”
Int. J. Mech. Sci.
,
28
, pp.
491
497
.
18.
Zhaotao
,
Z.
, and
Bingwen
,
L.
,
1986
, “
Determination of blank shapes for drawing irregular cups using an electrical analogue method
,”
Int. J. Mech. Sci.
,
28
, pp.
499
503
.
19.
Gea
,
H. C.
, and
Ramamurthy
,
R.
,
1998
, “
Blank design optimization on deep drawing of square shells
,”
Trans. IIE
,
30
, pp.
913
921
.
20.
Park
,
S. H.
,
Yoon
,
J. W.
,
Yang
,
D. Y.
, and
Kim
,
Y. H.
,
1999
, “
Optimum blank design in sheet metal forming by the deformation path iteration method
,”
Int. J. Mech. Sci.
,
41
, pp.
1217
1232
.
21.
Shim, H. B., So, K. C., and Kim, K. H., 1999, “Optimum Blank Shape Design by Sensitivity Analysis,” Proc. Numisheet’99, Vol. 1, Besancon, France, pp. 523–528.
22.
Belytschko
,
T.
,
Lin
,
J. I.
, and
Tsay
,
C.
,
1984
, “
Explicit algorithm for the nonlinear dynamics of shells
,”
Comp. Meth. Appl. Eng.
,
42
, pp.
225
251
.
23.
Lee, C. H., Shim, H. B., and Yang, D. Y., 1988, “Determination of frictional coefficient for sheet metal working and its application to stretch forming,” 6th Int. Congress on Experimental Mechanics and Manufacturers Exhibit, Portland, Oregon, pp. 71–76.
You do not currently have access to this content.