Fracture experiments in a high-strength ductile steel (2.3Ni-1.3Cr-0.17C) were conducted under static and dynamic loading conditions in a three-point bend and a one-point bend configurations. A qualitative description of the influence of loading rate on the microscopic features of the fracture surfaces and their role in the fracture initiation process was considered. The fracture surfaces consist of tunneled region and shear lips. The size of the shear lips increases with increasing loading rate and is characterized by micro-voids and cell structures. The tunneled region consists of large voids and micro-voids that coalesce by impingement. At high loading rates, localized molten zones are observed at the tunnel-shear lip interface.
Issue Section:
Technical Papers
1.
Marchand
, A.
, and Duffy
, J.
, 1988
, “An Experimental Study of the Formation Process of Adiabatic Shear Bands in a Structural Steel
,” J. Mech. Phys. Solids
, 36
, pp. 251
–283
.2.
Zhuang, S., and Ravichandran, G., 1998, SM Report No. 98-4, Graduate Aeronautical Laboratories, California Institute of Technology, Pasadena, CA.
3.
Low
, J. R.
, Jr., 1968
, “Effects of Microstructure on Fracture Toughness of High Strength Alloys
,” Eng. Fract. Mech.
, 1
, pp. 47
–53
.4.
Cox
, T. B.
, and Low
, J. R.
, Jr., 1974
, “An Investigation of the Plastic Fracture of AISI 4340 and 18 Nickel-200 Grade Maraging Steels
,” Metall. Trans. A
, 5
, pp. 1457
–1470
.5.
Argon
, A. S.
, Im
, J.
, and Safoglu
, R.
, 1975
, “Cavity Formation from Inclusions in Ductile Fracture
,” Metall. Trans. A
, 6
, pp. 825
–837
.6.
Zurek
, A. K.
, Thissell
, W. R.
, Tonks
, D. L.
, Hixson
, R.
, and Addessio
, F.
, 1997
, “Quantification of Damage Evolution for a Micromechanical Model of Ductile Fracture in Spallation of Tantalum
,” J. Phys. IV
, C3
, pp. 903
–908
.7.
Argon
, A. S.
, and Im
, J.
, 1975
, “Separation of Second Phase Particles in Spheroidized 1045 Steel, Cu-0.6Pct Cr Alloy and Maraging Steel in Plastic Straining
,” Metall. Trans. A
, 6
, pp. 839
–851
.8.
Le Roy
, G.
, Embury
, J. D.
, Edward
, G.
, and Ashby
, M. F.
, 1981
, “A Model of Ductile Fracture Based on the Nucleation and Growth of Voids
,” Acta Metall.
, 29
, pp. 1509
–1522
.9.
Curran
, D. R.
, Seaman
, L.
, and Shockey
, D. A.
, 1987
, “Dynamic Failure of Solids
,” Phys. Rep.
, 147
, pp. 253
–388
.10.
Needleman
, A.
, and Tvergaard
, V.
, 1987
, “An Analysis Of Ductile Rupture Modes At A Crack Tip
,” J. Mech. Phys. Solids
, 35
, pp. 151
–183
.11.
Falskeog
, J.
, and Shih
, C. F.
, 1997
, “Micromechanics of Coalescence. 1. Synergistic Effects of Elasticity, Plastic Yielding and Multi-Size-Scale Voids
,” J. Mech. Phys. Solids
, 45
, pp. 21
–50
.12.
Tonks
, D. L.
, Thissell
, W. R.
, Zurek
, A. K.
, and Hixson
, R.
, 1997
, “Quantative Analysis of Damage Clustering and Void Linking for Spallation Modeling in Tantalum
,” J. Phys. IV
, C3
, pp. 841
–846
.13.
Tvergaard
, V.
, 1990
, “Material Failure By Void Growth To Coalescence
,” Adv. Appl. Mech.
, 27
, pp. 83
–151
.14.
Rice, J. R., and Johnson, M. A., 1970, “The Role of Large Crack Tip Geometry Changes in Plane Strain Fracture,” Inelastic Behavior of Solids, McGraw-Hill, New York, pp. 641–672.
15.
McMeeking
, R. M.
, 1977
, “Finite Deformation Analysis of Crack-Tip Opening in Elastic-Plastic Materials and Implications for Fracture
,” J. Mech. Phys. Solids
, 25
, pp. 357
–381
.16.
Couque
, H.
, Asaro
, R. J.
, Duffy
, J.
, and Lee
, S. H.
, 1988
, “Correlations of Microstructure with Dynamic and Quasi-Static Fracture in a Plain Carbon-Steel
,” Metall. Trans. A
, 19
, pp. 2179
–2206
.17.
Godse
, R.
, Ravichandran
, G.
, and Clifton
, R. J.
, 1989
, “Micromechanisms of Dynamic Crack Propagation in an AISI-4340 Steel
,” Mater. Sci. Eng.
, A112
, pp. 79
–88
.18.
Tvergaard
, V.
, and Needleman
, A.
, 1986
, “Effect Of Material Rate Sensitivity On Failure Modes In The Charpy V-Notch Test
,” J. Mech. Phys. Solids
, 34
, pp. 213
–241
.19.
Needleman
, A.
, 1997
, “Numerical Modeling Of Crack Growth Under Dynamic Loading Conditions
,” Comput. Mech.
, 19
, pp. 463
–469
.20.
Needleman
, A.
, and Tvergaard
, V.
, 1998
, “Dynamic Crack Growth In A Nonlocal Progressively Cavitating Solid
,” Eur. J. Mech. A/Solids
, 17
, pp. 421
–438
.21.
Basu
, S.
, and Narasimhan
, R.
, 1999
, “A Finite Element Study Of The Effects Of Material Characteristics And Crack Tip Constraint On Dynamic Ductile Fracture Initiation
,” J. Mech. Phys. Solids
, 47
, pp. 325
–350
.22.
Hutchinson
, J. W.
, 1968
, “Singular Behavior at the End of a Tensile Crack in a Hardening Material
,” J. Mech. Phys. Solids
, 16
, pp. 13
–31
.23.
Rice
, J. R.
, and Rosengren
, G. F.
, 1968
, “Plane Strain Deformation Near a Crack Tip in a Power Law Hardening Material
,” J. Mech. Phys. Solids
, 16
, pp. 1
–12
.24.
Guduru
, P. R.
, Singh
, R. P.
, Ravichandran
, G.
, and Rosakis
, A. J.
, 1998
, “Dynamic Crack Initiation in Ductile Steels
,” J. Mech. Phys. Solids
, 46
, pp. 1997
–2016
.25.
Nakamura
, T.
, and Parks
, D. M.
, 1990
, “3-Dimensional Crack Front Fields In A Thin Ductile Plate
,” J. Mech. Phys. Solids
, 38
, pp. 787
–812
.26.
Narasimhan
, R.
, Rosakis
, A. J.
, and Moran
, B.
, 1992
, “A 3-Dimensional Numerical Investigation Of Fracture Initiation By Ductile Failure Mechanisms In A 4340 Steel
,” Int. J. Fract.
, 56
, pp. 1
–24
.27.
Chung
, D.-T.
, Horgan
, C. O.
, and Abeyaratnne
, R.
, 1987
, “A Note on a Bifurcation Problem in Finite Plasticity Related to Void Nucleation
,” Int. J. Solids Struct.
, 23
, pp. 983
–988
.28.
Wu
, F. H.
, and Freund
, L. B.
, 1984
, “Deformation Trapping Due To Thermoplastic Instability In One-Dimensional Wave-Propagation
,” J. Mech. Phys. Solids
, 32
, pp. 119
–132
.29.
Klepaczko
, J. R.
, 1998
, “Remarks on Impact Shearing
,” J. Mech. Phys. Solids
, 46
, pp. 2139
–2153
.Copyright © 2001
by ASME
You do not currently have access to this content.