A notable feature of replicated creep and creep-rupture data is the considerable amount of statistical scatter present. The existence of this scatter leads to substantial uncertainties in the predictions of creep deformation and failure. In this paper, we review the experimental evidence in this regard. We then survey recent efforts to construct models of creep deformation and rupture that include one or more aspects of this randomness. [S0094-4289(00)01703-5]

1.
Sprung, I., and Zilberstein, V. A., 1988, “Variability of Creep Properties and Creep-Crack Growth Predictions,” Understanding Variability in Creep and Rupture Behavior, Prager M., and Parker, J. D., eds., MPC-Vol. 23, ASME, New York, pp. 6–13.
2.
Garafalo
,
F.
,
Whitmore
,
R. W.
,
Domis
,
W. F.
, and
von Gemmingen
,
F.
,
1961
, “
Creep and Creep-Rupture Relationships in an Austenitic Stainless Steel
,”
Trans. Metall. Soc. AIME
,
221
, pp.
310
319
.
3.
BSCC High Temperature Data, 1973, Iron and Steel Institute, London.
4.
Evans
,
M.
,
1994
, “
A Statistical Analysis of the Failure Time Distribution for ½ Cr-½ Mo- ¼ V Steel Tubes in the Presence of Outliers
,”
Int. J. Pressure Vessels Piping
,
60
, pp.
193
207
.
5.
Booker, M. K., Booker, B. L. P., and Swindeman, R. W., 1982, “Analysis of Elevated-Temperature Tensile and Creep Properties of Normalized and Tempered 2¼ Cr-1 Mo Steel,” Advanced Materials for Pressure Vessel Service with Hydrogen and High Temperatures and Pressures, Semchysen, M., eds. Am. Soc. Mech. Eng., pp. 273–286.
6.
Kimura, K., Kushima, H., Abe, F., and Yagi, K., 1997, “Inherent Creep Strength and a New Approach to the Evaluation of Long Term Creep Strength Properties,” Creep and Fracture of Engineering Materials and Structures, Earthman, J. C., and Mohamed, F. A., eds., pp. 89–98.
7.
Davies
,
R. B.
,
Hales
,
R.
,
Harman
,
J. C.
, and
Holdsworth
,
S. R.
,
1999
, “
Statistical Modeling of Creep Rupture Data
,”
ASME J. Eng. Mater. Technol.
,
121
, pp.
264
271
.
8.
Lister, E., Barr, R. R., Hacar, J., Harvey, R. P., and Turney, R., 1966, “The Determination of the Elevated Temperature Properties of Steel,” Proc. Joint Conf. On High-Temperature Properties of Steels, British Iron and Steel Research Association and Iron and Steel Institute, pp. 47–60.
9.
Rutman, W., Krause, M., and Kremer, K. J., 1966, “International Community Tests on Long-Term Behavior of 2¼ Cr-1 Mo Steel,” Proc. Joint. Conf. On High-Temperature Properties of Steels, British Iron and Steel Research Association and Iron and Steel Institute, pp. 232–239.
10.
Hayhurst
,
D. R.
,
1974
, “
The Effects of Test Variables on Scatter in High-Temperature Tensile Creep Rupture Data
,”
Int. J. Mech. Sci.
,
16
, pp.
829
841
.
11.
Penny
,
R. K.
,
Ellison
,
E. G.
, and
Webster
,
G. A.
,
1966
, “
Specimen Alignment and Strain Measurement in Axial Creep Tests
,”
ASTM Mater. Res. Standards
,
6
, pp.
76
84
.
12.
Farris
,
J. P.
,
Lee
,
J. D.
,
Harlow
,
D. G.
, and
Delph
,
T. J.
,
1990
, “
On the Scatter in Creep Rupture Times
,”
Metall. Trans. A
,
21A
, pp.
345
352
.
13.
Raj
,
R.
,
1978
, “
Intergranular Fracture in Bicrystals
,”
Acta Metall.
,
26
, pp.
341
349
.
14.
Liu
,
T.-S.
,
Fields
,
R. J.
,
Harlow
,
D. G.
, and
Delph
,
T. J.
,
1984
, “
Statistical Observations of Creep Cavitation in AISI Type 304 Stainless Steel
,”
Scr. Metall.
,
19
, pp.
299
304
.
15.
Liu
,
T.-S.
,
Fields
,
R. J.
,
Fariborz
,
S. J.
,
Harlow
,
D. G.
, and
Delph
,
T. J.
,
1988
, “
Experimental Observations and Analysis of Creep Cavitation in AISI Type 304 Stainless Steel
,”
Acta Metall.
,
36
, pp.
2481
2491
.
16.
Dobbyn
,
R. C.
,
Farris
,
J. R.
,
Harlow
,
D. G.
,
Fields
,
R. J.
, and
Delph
,
T. J.
,
1989
, “
In-Situ Imaging of Creep Cavities by Synchrotron Microradiography
,”
Scr. Metall.
,
23
, pp.
621
623
.
17.
Cockman
,
J. R.
,
Fields
,
R. J.
,
Harlow
,
D. G.
, and
Delph
,
T. J.
,
1995
, “
Spatial Statistics of Creep Cavities
,”
Modell. Simul. Mater. Sci. Eng.
,
3
, pp.
187
200
.
18.
Onck
,
P.
, and
van der Giessen
,
E.
,
1997
, “
Influence of Microstructural Variations on Steady State Creep and Facet Stresses in 2-D Freely Sliding Polycrystals
,”
Int. J. Solids Struct.
,
34
, pp.
703
726
.
19.
Delph
,
T. J.
, and
Yukich
,
J. E.
,
1992
, “
A Finite Element Method for the Probabilistic Creep of Solids
,”
Int. J. Numer. Methods Eng.
,
35
, pp.
1171
1182
.
20.
Harlow
,
D. G.
, and
Delph
,
T. J.
,
1991
, “
Solutions of Random Initial Value Problems
,”
Math. Comput. Simul.
,
33
, pp.
243
258
.
21.
Elishakoff, I., 1993, Probabilistic Methods in the Theory of Structures, Wiley, New York.
22.
Hull
,
D.
, and
Rimmer
,
D. E.
,
1959
, “
The Growth of Grain Boundary Voids Under Stress
,”
Philos. Mag. A
,
4
, pp.
673
687
.
23.
Fariborz
,
S. J.
,
Harlow
,
D. G.
, and
Delph
,
T. J.
,
1985
, “
The Effects of Nonperiodic Void Spacing Upon Intergranular Creep Cavitation
,”
Acta Metall.
,
33
, pp.
1
9
.
24.
Yu
,
J.
, and
Chang
,
J. O.
,
1990
, “
Creep Rupture by Diffusive Growth of Randomly Distributed Cavities—I. Instantaneous Cavity Nucleation
,”
Acta Metall.
,
38
, pp.
1423
1434
.
25.
Fariborz
,
S. J.
,
Harlow
,
D. G.
, and
Delph
,
T. J.
,
1986
, “
Intergranular Creep Cavitation with Time-Discrete Stochastic Nucleation
,”
Acta Metall.
,
34
, pp.
1433
1441
.
26.
Page
,
R. A.
, and
Chan
,
K. S.
,
1987
, “
Stochastic Aspects of Creep Cavitation in Ceramics
,”
Metall. Trans. A
,
18
, pp.
1843
1854
.
27.
Yu
,
J.
, and
Chung
,
J. O.
,
1990
, “
Intergranular Creep Cavitation with Time-Discrete Stochastic Nucleation-II. Continual Cavity Nucleation
,”
Acta Metall.
,
38
, pp.
1435
1443
.
28.
Xiao
,
D.
,
Yukich
,
J. E.
,
Harlow
,
D. G.
, and
Delph
,
T. J.
,
1992
, “
A Simplified Probabilistic Model of the Growth of Creep Cavitation
,”
Philos. Mag. A
,
65
, pp.
71
84
.
29.
Wilkinson
,
D.
,
1988
, “
The Effect of a Nonuniform Void Distribution on Grain Boundary Void Growth During Creep
,”
Acta Metall.
,
36
, pp.
2055
2068
.
30.
Chyou
,
J.-J.
, and
Delph
,
T. J.
,
1988
, “
Some Effects of Random Creep Cavity Placement Along a Planar Grain Boundary
,”
Scr. Metall.
,
22
, pp.
871
875
.
31.
Riesch-Oppermann, H., and Bru¨ckner-Foit, A., 1994, “Grain Boundary Failure and Geometrical Models of Creep Damage,” Probabilistic Structural Mechanics, Spanos, P. D., and Wu, Y. T., eds., pp. 442–454, Springer-Verlag, Berlin.
32.
van der Giessen
,
E.
, and
Tvergaard
,
V.
,
1994
, “
Effect of Random Variations in Microstructure on the Development of Final Creep Failure in Polycrystalline Aggregates
,”
Modell. Simul. Mater. Sci. Eng.
,
2
, pp.
721
738
.
33.
van der Geissen
,
E.
,
Onck
,
P. R.
, and
van der Burg
,
M. W. D.
,
1997
, “
Some Effects of Random Microstructural Variations on Creep Rupture
,”
Eng. Fract. Mech.
,
57
, pp.
205
226
.
34.
Harlow
,
D. G.
,
Lu
,
H.-M.
,
Hittinger
,
J. A.
,
Delph
,
T. J.
, and
Wei
,
R. P.
,
1996
, “
A Probabilistic Model for the Brittle Failure of Polycrystalline Solids
,”
Modell. Simul. Mater. Sci. Eng.
,
4
, pp.
261
279
.
35.
Riedel
,
H.
,
1989
, “
Life Prediction Methods for Constrained Grain Boundary Cavitation
,”
Int. J. Pressure Vessels Piping
,
39
, pp.
119
134
.
36.
Harlow
,
D. G.
, and
Delph
,
T. J.
,
1993
, “
A Computational Probabilistic Model for Creep Damaging Solids
,”
Comput. Struct.
,
34
, pp.
161
166
.
37.
Masden, S. O., Krenk, S., and Lind, N. C., 1986, Methods of Structural Safety, Prentice-Hall, Englewood Cliffs, NJ.
38.
Harlow
,
D. G.
, and
Delph
,
T. J.
,
1997
, “
A Probabilistic Model for Creep-Fatigue Failure
,”
ASME J. Pressure Vessel Technol.
,
19
, pp.
45
51
.
39.
Liu
,
W. K.
,
Besterfield
,
G. H.
, and
Belytschko
,
T.
,
1988
, “
Finite Element Methods in Probabilistic Mechanics
,”
Prob. Eng. Mech.
,
2
, pp.
201
213
.
40.
Ghanem, R., and Spanos, P. D., 1991, Stochastic Finite Elements: A Spectral Approach, Springer-Verlag, New York.
You do not currently have access to this content.