A notable feature of replicated creep and creep-rupture data is the considerable amount of statistical scatter present. The existence of this scatter leads to substantial uncertainties in the predictions of creep deformation and failure. In this paper, we review the experimental evidence in this regard. We then survey recent efforts to construct models of creep deformation and rupture that include one or more aspects of this randomness. [S0094-4289(00)01703-5]
Issue Section:
Technical Papers
1.
Sprung, I., and Zilberstein, V. A., 1988, “Variability of Creep Properties and Creep-Crack Growth Predictions,” Understanding Variability in Creep and Rupture Behavior, Prager M., and Parker, J. D., eds., MPC-Vol. 23, ASME, New York, pp. 6–13.
2.
Garafalo
, F.
, Whitmore
, R. W.
, Domis
, W. F.
, and von Gemmingen
, F.
, 1961
, “Creep and Creep-Rupture Relationships in an Austenitic Stainless Steel
,” Trans. Metall. Soc. AIME
, 221
, pp. 310
–319
.3.
BSCC High Temperature Data, 1973, Iron and Steel Institute, London.
4.
Evans
, M.
, 1994
, “A Statistical Analysis of the Failure Time Distribution for ½ Cr-½ Mo- ¼ V Steel Tubes in the Presence of Outliers
,” Int. J. Pressure Vessels Piping
, 60
, pp. 193
–207
.5.
Booker, M. K., Booker, B. L. P., and Swindeman, R. W., 1982, “Analysis of Elevated-Temperature Tensile and Creep Properties of Normalized and Tempered 2¼ Cr-1 Mo Steel,” Advanced Materials for Pressure Vessel Service with Hydrogen and High Temperatures and Pressures, Semchysen, M., eds. Am. Soc. Mech. Eng., pp. 273–286.
6.
Kimura, K., Kushima, H., Abe, F., and Yagi, K., 1997, “Inherent Creep Strength and a New Approach to the Evaluation of Long Term Creep Strength Properties,” Creep and Fracture of Engineering Materials and Structures, Earthman, J. C., and Mohamed, F. A., eds., pp. 89–98.
7.
Davies
, R. B.
, Hales
, R.
, Harman
, J. C.
, and Holdsworth
, S. R.
, 1999
, “Statistical Modeling of Creep Rupture Data
,” ASME J. Eng. Mater. Technol.
, 121
, pp. 264
–271
.8.
Lister, E., Barr, R. R., Hacar, J., Harvey, R. P., and Turney, R., 1966, “The Determination of the Elevated Temperature Properties of Steel,” Proc. Joint Conf. On High-Temperature Properties of Steels, British Iron and Steel Research Association and Iron and Steel Institute, pp. 47–60.
9.
Rutman, W., Krause, M., and Kremer, K. J., 1966, “International Community Tests on Long-Term Behavior of 2¼ Cr-1 Mo Steel,” Proc. Joint. Conf. On High-Temperature Properties of Steels, British Iron and Steel Research Association and Iron and Steel Institute, pp. 232–239.
10.
Hayhurst
, D. R.
, 1974
, “The Effects of Test Variables on Scatter in High-Temperature Tensile Creep Rupture Data
,” Int. J. Mech. Sci.
, 16
, pp. 829
–841
.11.
Penny
, R. K.
, Ellison
, E. G.
, and Webster
, G. A.
, 1966
, “Specimen Alignment and Strain Measurement in Axial Creep Tests
,” ASTM Mater. Res. Standards
, 6
, pp. 76
–84
.12.
Farris
, J. P.
, Lee
, J. D.
, Harlow
, D. G.
, and Delph
, T. J.
, 1990
, “On the Scatter in Creep Rupture Times
,” Metall. Trans. A
, 21A
, pp. 345
–352
.13.
Raj
, R.
, 1978
, “Intergranular Fracture in Bicrystals
,” Acta Metall.
, 26
, pp. 341
–349
.14.
Liu
, T.-S.
, Fields
, R. J.
, Harlow
, D. G.
, and Delph
, T. J.
, 1984
, “Statistical Observations of Creep Cavitation in AISI Type 304 Stainless Steel
,” Scr. Metall.
, 19
, pp. 299
–304
.15.
Liu
, T.-S.
, Fields
, R. J.
, Fariborz
, S. J.
, Harlow
, D. G.
, and Delph
, T. J.
, 1988
, “Experimental Observations and Analysis of Creep Cavitation in AISI Type 304 Stainless Steel
,” Acta Metall.
, 36
, pp. 2481
–2491
.16.
Dobbyn
, R. C.
, Farris
, J. R.
, Harlow
, D. G.
, Fields
, R. J.
, and Delph
, T. J.
, 1989
, “In-Situ Imaging of Creep Cavities by Synchrotron Microradiography
,” Scr. Metall.
, 23
, pp. 621
–623
.17.
Cockman
, J. R.
, Fields
, R. J.
, Harlow
, D. G.
, and Delph
, T. J.
, 1995
, “Spatial Statistics of Creep Cavities
,” Modell. Simul. Mater. Sci. Eng.
, 3
, pp. 187
–200
.18.
Onck
, P.
, and van der Giessen
, E.
, 1997
, “Influence of Microstructural Variations on Steady State Creep and Facet Stresses in 2-D Freely Sliding Polycrystals
,” Int. J. Solids Struct.
, 34
, pp. 703
–726
.19.
Delph
, T. J.
, and Yukich
, J. E.
, 1992
, “A Finite Element Method for the Probabilistic Creep of Solids
,” Int. J. Numer. Methods Eng.
, 35
, pp. 1171
–1182
.20.
Harlow
, D. G.
, and Delph
, T. J.
, 1991
, “Solutions of Random Initial Value Problems
,” Math. Comput. Simul.
, 33
, pp. 243
–258
.21.
Elishakoff, I., 1993, Probabilistic Methods in the Theory of Structures, Wiley, New York.
22.
Hull
, D.
, and Rimmer
, D. E.
, 1959
, “The Growth of Grain Boundary Voids Under Stress
,” Philos. Mag. A
, 4
, pp. 673
–687
.23.
Fariborz
, S. J.
, Harlow
, D. G.
, and Delph
, T. J.
, 1985
, “The Effects of Nonperiodic Void Spacing Upon Intergranular Creep Cavitation
,” Acta Metall.
, 33
, pp. 1
–9
.24.
Yu
, J.
, and Chang
, J. O.
, 1990
, “Creep Rupture by Diffusive Growth of Randomly Distributed Cavities—I. Instantaneous Cavity Nucleation
,” Acta Metall.
, 38
, pp. 1423
–1434
.25.
Fariborz
, S. J.
, Harlow
, D. G.
, and Delph
, T. J.
, 1986
, “Intergranular Creep Cavitation with Time-Discrete Stochastic Nucleation
,” Acta Metall.
, 34
, pp. 1433
–1441
.26.
Page
, R. A.
, and Chan
, K. S.
, 1987
, “Stochastic Aspects of Creep Cavitation in Ceramics
,” Metall. Trans. A
, 18
, pp. 1843
–1854
.27.
Yu
, J.
, and Chung
, J. O.
, 1990
, “Intergranular Creep Cavitation with Time-Discrete Stochastic Nucleation-II. Continual Cavity Nucleation
,” Acta Metall.
, 38
, pp. 1435
–1443
.28.
Xiao
, D.
, Yukich
, J. E.
, Harlow
, D. G.
, and Delph
, T. J.
, 1992
, “A Simplified Probabilistic Model of the Growth of Creep Cavitation
,” Philos. Mag. A
, 65
, pp. 71
–84
.29.
Wilkinson
, D.
, 1988
, “The Effect of a Nonuniform Void Distribution on Grain Boundary Void Growth During Creep
,” Acta Metall.
, 36
, pp. 2055
–2068
.30.
Chyou
, J.-J.
, and Delph
, T. J.
, 1988
, “Some Effects of Random Creep Cavity Placement Along a Planar Grain Boundary
,” Scr. Metall.
, 22
, pp. 871
–875
.31.
Riesch-Oppermann, H., and Bru¨ckner-Foit, A., 1994, “Grain Boundary Failure and Geometrical Models of Creep Damage,” Probabilistic Structural Mechanics, Spanos, P. D., and Wu, Y. T., eds., pp. 442–454, Springer-Verlag, Berlin.
32.
van der Giessen
, E.
, and Tvergaard
, V.
, 1994
, “Effect of Random Variations in Microstructure on the Development of Final Creep Failure in Polycrystalline Aggregates
,” Modell. Simul. Mater. Sci. Eng.
, 2
, pp. 721
–738
.33.
van der Geissen
, E.
, Onck
, P. R.
, and van der Burg
, M. W. D.
, 1997
, “Some Effects of Random Microstructural Variations on Creep Rupture
,” Eng. Fract. Mech.
, 57
, pp. 205
–226
.34.
Harlow
, D. G.
, Lu
, H.-M.
, Hittinger
, J. A.
, Delph
, T. J.
, and Wei
, R. P.
, 1996
, “A Probabilistic Model for the Brittle Failure of Polycrystalline Solids
,” Modell. Simul. Mater. Sci. Eng.
, 4
, pp. 261
–279
.35.
Riedel
, H.
, 1989
, “Life Prediction Methods for Constrained Grain Boundary Cavitation
,” Int. J. Pressure Vessels Piping
, 39
, pp. 119
–134
.36.
Harlow
, D. G.
, and Delph
, T. J.
, 1993
, “A Computational Probabilistic Model for Creep Damaging Solids
,” Comput. Struct.
, 34
, pp. 161
–166
.37.
Masden, S. O., Krenk, S., and Lind, N. C., 1986, Methods of Structural Safety, Prentice-Hall, Englewood Cliffs, NJ.
38.
Harlow
, D. G.
, and Delph
, T. J.
, 1997
, “A Probabilistic Model for Creep-Fatigue Failure
,” ASME J. Pressure Vessel Technol.
, 19
, pp. 45
–51
.39.
Liu
, W. K.
, Besterfield
, G. H.
, and Belytschko
, T.
, 1988
, “Finite Element Methods in Probabilistic Mechanics
,” Prob. Eng. Mech.
, 2
, pp. 201
–213
.40.
Ghanem, R., and Spanos, P. D., 1991, Stochastic Finite Elements: A Spectral Approach, Springer-Verlag, New York.
Copyright © 2000
by ASME
You do not currently have access to this content.