The effects of vanadium layer thickness (100, 200 and 400 μm) on the resistance-curve behavior of NiAl/V, microlaminates are examined in this paper. The fracture resistance of the NiAl microlaminates reinforced with 20 vol.% of vanadium layers is shown to increase with increasing vanadium layer thickness. The improved fracture toughness (from an NiAl matrix toughness of 6˜.6MPam to a steady-state toughness of 1˜5MPam obtained from finite element analysis) is associated with crack bridging and the interactions of cracks with vanadium layers. The reinitiation of cracks in adjacent NiAl layers is modeled using finite element methods and the reinitiation is shown to occur as a result of strain concentrations at the interface between the adjacent NiAl layers and vanadium layers. The deviation of the reinitiated cracks from the pure mode I direction is shown to occur in the direction of maximum shear strain. Toughening due to crack bridging is also modeled using large-scale bridging models. The intrinsic toughness levels of the microlaminates are also inferred by extrapolating the large scale bridging models to arbitrarily large specimen widths. The extrapolations also show that the small-scale bridging intrinsic toughness increases with increasing vanadium layer thickness.

1.
Bloyer
D. R.
,
Venkateswara Rao
K. T.
, and
Ritchie
R. O.
,
1996
,
Materials Science and Engineering
, Vol.
A216
, pp.
80
-
90
.
2.
Bloyer
D. R.
,
Venkateswara Rao
K. T.
, and
Ritchie
R. O.
,
1998
,
Metallurgical and Materials Transactions A
, Vol.
29A
, pp.
2483
2496
.
3.
Bowman
R. R.
,
Noebe
R. D.
,
Raj
S. V.
, and
Locci
I. E.
,
1992
,
Metallurgical Transactions A
, Vol.
23A
, pp.
1493
1508
.
4.
Budiansky
B.
,
Amazigo
J. C.
, and
Evans
A. G.
,
1988
,
J. Mech. Phys. Solids
, Vol.
36
, pp.
167
187
.
5.
Cox
B. N.
, and
Lo
C. S.
,
1992
,
Acta Metallurgica et Materialia
, Vol.
40
, pp.
69
80
.
6.
Cox
B. N.
, and
Rose
L. R. F.
,
1996
,
Mechanics of Materials
, Vol.
22
, pp.
249
263
.
7.
Chen
X. F.
,
Johnson
D. R.
,
Noebe
R. D.
, and
Oliver
B. F.
,
1995
,
Journal of Materials Research
, Vol.
10
, pp.
1159
1170
.
8.
Fett, T., and Munz, D., 1994, “Stress Intensity Factors and Weight Functions for One-Dimensional Cracks,” Institut fur Materialforschung, Kernforschungszentrum, Karlsryhe, Germany.
9.
George
E. P.
, and
Liu
C. T.
,
1990
,
Journal of Materials Research
, Vol.
5
, pp.
754
762
.
10.
Heredia
F. E.
,
He
M. Y.
,
Lucas
G. E.
,
Evans
A. G.
,
Deve
H. E.
, and
Konitzer
D.
,
1993
,
Acta Metallurgica et Materialia
, Vol.
41
, pp.
505
511
.
11.
Joslin
S. M.
,
Chen
X. F.
,
Oliver
B. F.
, and
Noebe
R. D.
,
1995
,
Materials Science and Engineering
, Vol.
A196
, pp.
9
18
.
12.
Miracle
D. B.
,
1993
,
Acta Metallurgica et Materialia
, Vol.
41
, pp.
649
684
.
13.
Noebe, R. D., Ritzert, F. J., Misra, A., and Gibala, R., 1991, “Prospects for Ductility and Toughness Enhancement of NiAl by Ductile Phase Reinforcement,” NASA Technical Memorandum 103796, NASA Lewis Research Center, Cleveland, OH.
14.
Odette
G. R.
,
Chao
B. L.
,
Sheckherd
J. W.
, and
Lucas
G. E.
,
1992
,
Acta Metallurgica et Materialia
, Vol.
40
, pp.
2381
2389
.
15.
Ramasundaram
P.
,
Bowman
R.
, and
Soboyejo
W.
,
1998
,
Materials Science and Engineering
, Vol.
A248
, pp.
132
146
.
16.
Subramanian
P. R.
,
Mendiratta
M. G.
, and
Miracle
D. B.
,
1994
,
Metallurgical and Materials Transactions A
, Vol.
25A
, pp.
2769
1781
.
17.
Tada, H., Paris, P. C., and Irwin, G. R., 1985, “The Stress Analysis of Cracks Handbook,” Del Research Corporation, St. Louis, MO.
18.
Ye, F., Li, M., and Soboyejo, W. O., 1999, in press, Journal of the American Ceramic Society.
19.
Zok
F.
, and
Hom
C. L.
,
1990
,
Acta Metallurgica et Materialia
, Vol.
38
, pp.
1895
1904
.
This content is only available via PDF.
You do not currently have access to this content.