A numerical study on the role of microstructure in the thermomechanical behavior of shape memory alloy (SMA) composites under uniaxial tension is performed. The simulation is based on the micromechanics model established recently by the authors. The influence of the shape and volume fraction of SMA on the overall behavior of the composite as well as on the internal stress and strain evolution is investigated. The strengthening effect of SMA on ductile matrix is illustrated. The obtained results demonstrate several interesting features of the new composite and may serve as a quantitative basis for the microstructure design of this composite in the future.

1.
Armstrong
W. D.
,
1996
, “
A One-Dimensional Model of a Shape Memory Alloy Fiber Reinforced Aluminum Metal Matrix Composite
,”
J. Intell. Mater. Sys. Struct
, Vol.
7
, pp.
448
454
.
2.
Armstrong
W. D.
and
Kino
H.
,
1995
, “
Martensitic Transformations in a NiTi fiber Reinforced 6061 Aluminum Matrix Composite
,”
J. Intell. Mater. Sys. Struct.
, Vol.
6
, pp.
809
816
.
3.
Bidaux
J. E.
,
Bernet
N.
,
Sarwa
C.
,
Manson
J. A. E.
and
Gotthardt
R.
,
1995
, “
Vibration Frequency Control of a Polymer Beam Using Embedded Shape-Memory-Alloy Fibres
,”
J. de Physique IV
, Vol.
5, C8
, pp.
1177
1182
.
4.
Birman
V.
,
1997
, “
Review of Mechanics of Shape Memory Alloy Structures
,”
Appl. Mech. Rev.
, Vol.
50
, pp.
629
645
.
5.
Boyd
J. G.
, and
Lagoudas
D. C.
1994
, “
Thermomechanical Response of Shape Memory Composites
,”
J. Intell. Mater. Sys. Struct.
, Vol.
5
, pp.
333
346
.
6.
Boyd
J. G.
, and
Lagoudas
D. C.
,
1996
, “
A Thermodynamical Constitutive Model for Shape Memory Materials. Part II. The SMA Composite Material
,”
Int. J. Plasticity
, Vol.
12
, pp.
843
873
.
7.
Cherkaoui, M., Sun, Q. P., and Song G. Q., 1998, “On the Micromechanics Modeling of Composite with Ductile Matrix and Shape Memory Alloy Reinforcement,” submitted to Int. J. Solids & Struct.
8.
Fischer
F. D.
,
Sun
Q. P.
, and
Tanaka
K.
,
1996
, “
Transformation-Induced Plasticity (TRIP)
,”
Appl. Mech. Rev.
, Vol.
49
, pp.
317
364
.
9.
Furuya
Y.
,
1996
, “
Design and Material Evaluation of Shape Memory Composites
,”
J. Intell. Mater. Sys. Strut.
, Vol.
7
, pp.
321
330
.
10.
Furuya
Y.
,
Sasaki
A.
, and
Taya
M.
,
1993
, “
Enhanced Mechanical Properties of TiNi Shape Memory Fiber/Al Matrix Composite
,”
Materials Transactions JIM
, Vol.
34
, pp.
224
227
.
11.
Hamada
K.
,
Lee
J. H.
,
Mizuuchi
K.
,
Taya
M.
, and
Inoue
K.
,
1997
, “
Mechanical Properties of Smart Metal Matrix Composite by Shape Memory Effects
,”
Mat. Res. Soc. Symp. Proc.
, Vol.
459
, pp.
143
148
.
12.
Jonnalagadda
K.
,
Kline
G. E.
, and
Sottos
N. R.
,
1997
, “
Local Displacement and Local Transfer in Shape Memory Alloy Composites
,”
Experimental Mechanics
, Vol.
37
, pp.
78
86
.
13.
Jonnalagadda
K.
and
Sottos
N. R.
,
1995
, “
Influence of Adhesion on Micromechanical Behavior of SMA Composites
,”
SPIE
, Vol.
2442
, pp.
143
151
.
14.
Lagoudas
D. C.
,
Boyd
J. G.
, and
Bo
Z.
,
1994
, “
Micromechanics of Active Composites with SMA Fibers
,”
ASME JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY
, Vol.
116
, pp.
337
347
.
15.
Lee
J. H.
,
Hamada
K.
,
Miziuuchi
K.
,
Taya
M.
, and
Inoue
K.
,
1997
, “
Microstructures and Mechanical Properties of 6061 Al Matrix Smart Composite Containing TiNi Shape Memory Alloy Fiber
,”
Mat. Res. Soc. Symp. Proc.
, Vol.
459
, pp.
419
424
.
16.
Lin
P. H.
,
Tobushi
H.
,
Tanaka
K.
,
Hattori
T.
, and
Makita
M.
,
1994
, “
Pseudoelastic Behavior of TiNi Shape Memory Alloy Subjected to Strain Variations
,”
J. Intell. Mater. Syst. & Struct.
, Vol.
5
, pp.
694
701
.
17.
Lin
P. H.
,
Tobushi
H.
,
Tanaka
K.
, and
Ikai
A.
,
1996
, “
Deformation Properties of TiNi Shape Memory Alloy
,”
JSME International Journal
, Vol.
A39
, pp.
108
116
.
18.
Rogueda
C.
,
Lexcellent
C.
, and
Bocher
L.
,
1996
, “
Experimental Study of Pseudoelastic Behaviour of a CuZnAl Polycrystalline Shape Memory Alloy Under Tension-Torsion Proportional and Non-Proportional Loading Tests
,”
Arch. Mech.
, Vol.
46
, pp.
1025
1045
.
19.
Shaw
J. A.
, and
Kyriakides
S.
,
1995
, “
Thermomechanical Aspects of NiTi
,”
J. Mech. Phys. Solids
, Vol.
43
, pp.
1243
1281
.
20.
Sottos
N. R.
,
Kline
G. E.
,
Qidwai
M. A.
and
Lagoudas
D. C.
,
1996
, “
Analysis of Phase Transformation Fronts in SMA Composites
,”
SPIE
, Vol.
2715
, pp.
427
438
.
21.
Stalmans
R.
,
Delaey
L.
and
Van Humbeeck
J.
,
1997
, “
Modelling of Adaptive Composite Materials with Embedded Shape Memory Alloy Wires
,”
Mat. Res. Soc. Symp. Proc.
, Vol.
459
, pp.
119
130
.
22.
Sun
G. J.
and
Sun
C. T.
,
1995
, “
Bending of Shape Memory Alloy Reinforced Composite Beam
,”
J. Materials Sci.
, Vol.
30
, pp.
5750
5754
.
23.
Sun
Q. P.
, and
Hwang
K. C.
,
1993
, “
Micromechanics Modelling for the Constitutive Behavior of Polycrystalline Shape Memory Alloys: I. Derivation of General Relations, II. Study of the Individual Phenomena
,”
J. Mech. Phys. Solids
, Vol.
41
, pp.
1
33
.
24.
Yamada
Y.
,
Taya
M.
, and
Watanabe
R.
,
1993
, “
Strengthening of Metal Matrix Composite by Shape Memory Effect
,”
Materials Transactions, JIM
, Vol.
34
, pp.
254
260
.
This content is only available via PDF.
You do not currently have access to this content.