Transmission electron microscopy is used to determine the microstructures of a Ti-50.8 at% Ni alloy given different aging treatments. Two different peak-aging treatments are shown to result in disk shaped semi-coherent Ti3Ni4 precipitates with a diameter ranging from 50 nm to 200 nm depending on the aging temperature. In the peak-aged materials, strong strain fields are clearly visible on TEM micrographs. An Eshelby based model is used to predict the local stress fields due to the differences in the lattice parameters of the precipitates and surrounding matrix. The position dependent local stress fields are then resolved onto the 24 different martensite correspondence variant pairs (CVP’s). It is further demonstrated that due to the unique orientation relationship that exists between the precipitate variants and the martensite CVP’s, the local resolved shear stresses are extremely large on some CVP’s and negligible on others. When the Ni rich NiTi is over-aged, it is found that the precipitates coarsen to approximately 1000nm, they become in-coherent, and the local stress fields disappear. It is also determined that after over-aging the average composition of the matrix drops from 50.8 at% Ni to approximately 50.4 at% Ni. In a subsequent paper (part II) the results here are used to explain the dependence of the critical transformation stress levels and martensite start temperatures on the aging treatment.

1.
Abujudom
D. N.
,
Thoma
P. E.
, and
Fariabi
S.
,
1990
, “
The Effect of Cold Work and Heat Treatment on the Phase Transformations of Near Equiatomic NiTi Shape Memory Alloy
,”
Mat. Sci. Forum
, Vol.
56–58
, pp.
565
570
.
2.
Beyer, J., Brakel, R. A., and Lloyd, J. R. T., 1986, “Precipitation Processes in TiNi Near Equiatomic Alloy,” ICOMAT-86, pp. 703–708.
3.
Buchheit
T. E.
, and
Wert
J. A.
,
1994
, “
Modeling the Effects of Stress State and Crystal Orientation on the Stress-Induced Transformation of NiTi Single Crystals
,”
Metall. Mater. Trans.
, Vol.
25A
, pp.
2383
2389
.
4.
Buchheit
T. E.
,
Wert
J. A.
,
1996
, “
Predicting the Orientation-Dependent Stress-induced Transformation and Detwinning Response of Shape Memory Alloy Single Crystals
,”
Metall. Mater. Trans.
, Vol.
27A
, pp.
269
279
.
5.
Chumlyakov
Y. I.
, and
Starenchenko
S. V.
,
1995
, “
Stress-Induced Martensitic Transformation in Aged Titanium Nickel Single Crystals
,”
J. Phys. IV, Colloq
, Vol.
5
, pp.
803
807
.
6.
Chumlyakov
Y. I.
,
Kireeva
I. V.
,
Lineytsev
V. N.
, and
Chepel
E. V.
,
1996
, “
Aging influence on the shape memory effects and superelasticity in Titanium-Nickel Single crystals
,”
MRS Symposium Proceedings
, Vol.
459
, Boston, pp.
387
392
.
7.
Duerig, T. W., and Pelton, A. R., 1994, “Ti-Ni Shape Memory Alloys,” Mater. Prop. Hnbk., ASM International, Titanium Alloys, pp. 1035–1048.
8.
Gall, K., Sehitoglu, H., Chumlyakov, Y., Kireeva, Y. I., and Maier, H. J., 1998, “The Influence of Aging on Critical Transformation Stress Levels and Martensite Start Temperatures in NiTi: Part II—Discussion of Experimental Results,” ASME JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY, published in this issue pp. 28–37.
9.
Gall
K.
,
Sehitoglu
H.
,
Chumlyakov
Y.
,
Zuev
Y.
, and
Karamar
I.
,
1998
A, “
The Role of Coherent Precipitates in Martensitic Transformations in Single Crystal and Polycrystalline Ti-50.8 at %Ni
,”
Scnpta Materialia
, Vol.
39
, No.
6
, pp.
699
706
.
10.
Honma, T., 1986, “The Effect of Aging on the Spontaneous Shape Change and the All-Round Shape Memory Effect in Ni-Rich TiNi Alloy,” ICOMAT-86, pp. 709–716.
11.
Hornbogen
E.
,
1985
, “
The effect of Variables on Martensitic Transformations Temperatures
,”
Acta. Mett.
, Vol.
33
, pp.
595
601
.
12.
Lieberman
D. S.
,
Wechsler
M. S.
, and
Read
T. A.
,
1955
, “
Cubic to Orthorombic Diffusionless Phase Change-Experimental and Theoretical Studies of AuCd
,”
J. App. Phys.
, Vol.
26
, pp.
473
484
.
13.
Li
D. Y.
and
Chen
L. Q.
,
1997
-1
, “
Selective Variant Growth of Coherent Ti11 Ni14 precipitate in a TiNi Alloy Under Applied Stress
,”
Acta Mater.
, Vol.
45
, pp.
471
479
.
14.
Li
D. Y.
and
Chen
L. Q.
,
1997-11
, “
Shape of a Rhombohedral Coherent Ti11 Ni14 precipitate in a Cubic Matrix and its Growth and Dissolution During Constrained Aging
,”
Acta Mater.
, Vol.
45
, pp.
2435
2442
.
15.
Madangopal
K.
,
1997
, “
The Self Accommodating Martensitic Microstructure of Ni-Ti Shape Memory Alloys
,”
Acta Mater.
, Vol.
45
, pp.
5347
5365
.
16.
Martin, J. W., 1980, Micromechanisms in Particle-Hardened Alloys, 1st edition, Cambridge University Press, Great Britian, p. 17.
17.
Matsumoto
O.
,
Miyazaki
S.
,
Otsuka
K.
, and
Tamura
H.
,
1987
, “
Crystallography of Martensitic Transformations in Ti-Ni Single Crystals
,”
Acta. Mett.
, Vol.
35
, pp.
2137
2144
.
18.
Miyazaki
S.
,
Ohmi
Y.
,
Otsuka
K.
, and
Suzuki
Y.
,
1982
, “
Characteristics of Deformation and Transformation Pseudoelasticity in Ti-Ni Alloys
,”
J. De. Phys.
, C-4, Vol.
43
, p.
255
255
.
19.
Miyazaki
S.
,
Kimura
S.
,
Otsuka
K.
, and
Suzuki
Y.
,
1984
, “
The Habit Plane and Transformation Strains Associated With the Martensitic Transformation in Ti-Ni Single Crystals
,”
Scr. Mett.
, Vol.
18
, pp.
883
888
.
20.
Miyazaki
S.
,
Otsuka
K.
, and
Wayman
C. M.
,
1989
, “
The Shape Memory Mechanism Associated with the Martensitic Transformation in Ti-Ni Alloys—I. Self Accommodation
,”
Acta. Mett.
, Vol.
37
, pp.
1873
1884
.
21.
Miyazaki
S.
,
Otsuka
K.
, and
Wayman
C. M.
,
1989
, “
The Shape Memory Mechanism Associated with the Martensitic Transformation in Ti-Ni Alloys—II. Variant Coalescence and Shape Recovery
,”
Acta. Mett.
, Vol.
37
, pp.
1885
1890
.
22.
Mura, T., 1987, Micromechanics of Defects in Solids, 2nd edition, Kluwer Academic Publishers, The Netherlands.
23.
Nishida
M.
,
Wayman
C. M.
, and
Honma
T.
,
1986
, “
Precipitation Processes in Near-Equiatomic TiNi Shape Memory Alloys
,”
Met. Trans.
, Vol.
17A
, pp.
1505
1515
.
24.
Nishida
M.
,
Wayman
C. M.
,
1988
, “
Electron Microscopy Studies of the ‘premartensitic’ Transformations in an Aged Ti-51 at.% Ni Shape Memory Alloy
,”
Metallography
, Vol.
21
, pp.
255
273
.
25.
Nishida
M.
,
Wayman
C. M.
,
Chiba
A.
,
1988
, “
Electron Microscopy Studies of the Martensitic Transformation in an Aged Ti-51 at.% NI Shape Memory Alloy
,”
Metallography
, Vol.
21
, pp.
275
291
.
26.
Otsuka
K.
,
Wayman
C. M.
,
Nakai
K.
,
Sakamoto
H.
, and
Shimizu
K.
,
1976
, “
Superelasticity Effects and Stress-Induced Martensitic Transformations in Cu-Al-Ni- Alloys
,”
Acta. Matall.
, Vol.
24
, pp.
207
226
.
27.
Ramanujan
R. V.
,
Aaronson
H. I.
, and
Leo
P. H.
,
1997
, “
The Role of Boundary Conditions in Modeling the Elastic Fields around a Misfitting Precipitate
,”
Meta. Trans. Comm.
, Vol.
20A
, pp.
1277
1279
.
28.
Tadaki
T.
,
Nakada
Y.
,
Shimizu
K.
,
Otsuka
K.
,
1986
, “
Crystal Structure, Composition and Morphology of a Precipitate in an Aged Ti-51 at % Ni Shape Memory Alloy
,”
Trans. JIM
, Vol.
27
, pp.
731
740
.
29.
Todoroki
T.
and
Tamura
H.
,
1987
, “
Effect of Heat Treatment after Cold Working on the Phase Transformation in TiNi alloy
,”
Trans. Jpn. Inst. Met.
, Vol.
28
, No.
2
, pp.
83
94
.
30.
Treppmann
D.
, and
Hornbogen
E.
,
1995
, “
The Effect of Dislocation Substructure and Decomposition on the Course of Diffusionless Transformation
,”
J. D. Physique IV
, Vol.
5
, pp.
211
216
.
31.
Treppmann
D.
,
Hornbogen
E.
, and
Wurzel
D.
,
1995
, “
The Effect of Combined Recrystallization and Precipitation Processes on the Functional and Structural Properties of NiTi Alloys
,”
J. De. Phys.
, Vol.
5
, pp.
569
574
.
32.
Wayman, C. M., 1986, “Phase Transformations in Ni-Ti Shape Memory Alloys,” ICOMAT 86, p. 645.
This content is only available via PDF.
You do not currently have access to this content.