A Constitutive model for describing the time dependent inelastic deformation of unidirectional and symmetric angle-ply CFRP (Carbon Fiber Reinforced Plastics) laminates is developed. The kinematic hardening creep law of Malinin and Khadjinsky and the evolution equation of Armstrong and Frederick are extended to describe the creep deformation of initially anisotropic materials. In particular, the evolution equations of the back stresses of the anisotropic material were formulated by introducing a transformed strain tensor, by which the expression of the equivalent strain rate of the an isotropic material has the identical form as that of the isotropic materials. The resulting model is applied to analyze the time dependent inelastic deformation of symmetric angle ply laminates. Comparison between the predictions and the experimental observations shows that the present model can describe well the time dependent inelastic behavior under different loadings.

1.
Mathiston
S. R.
,
Pindera
M. J.
, and
Herakovich
C. T.
,
1991
, “
Nonlinear Response of Resin Matrix Laminates Using Endochrohic Theory
,”
ASME JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY
, Vol.
113
, pp.
449
445
.
2.
Valanis
K. C.
,
1971
, “
A Theory of Viscoplasticity Without a Yield Surface
,”
Arc. Mech.
, Vol.
23
, pp.
517
533
.
3.
Valanis
K. C.
,
1971
, “
A Theory of viscoplasticity Without a Yield Surface
,”
Arc. Mech.
, Vol.
23
, pp.
535
551
.
4.
Gates
T. S.
and
Sun
C. T.
,
1991
, “
An Elastic/Viscoplastic Constitutive Model for Fiber Reinforced Thermoplastic Composites
,”
AIAA J.
, Vol.
29
, No.
3
, pp.
457
4663
.
5.
Sun
C. T.
and
Chen
J. L.
,
1989
, “
A Simple Flow Rule for Characterizing Nonlinear Behavior of Fiber Composites
,”
J. Comp. Mater.
, Vol.
23
, pp.
1009
1020
.
6.
Yoon
K. J.
and
Sun
C. T.
,
1991
, “
Characterization of Elastic-Viscoplastic Properties of an A24/PEEK Thermoplastic Composite
,”
J. Comp. Mater.
, Vol.
25
, pp.
1277
1296
.
7.
S.R.Bodner and Y.Partom, 1975, “Constitutive Equations for ElasticViscoplastic Strain Hardening Materials” ASME Journal of Applied Mechanics, June, pp. 385–389.
8.
Makinouchi
A.
and
Houjou
H.
,
1988
,
J. JSTP.
, Vol.
29–333
, pp.
997
1003
.
9.
Robinson
D. N.
,
1984
, “
Constitutive Relationships for Anisotropic High temperature alloys
,”
Nucl. Eng. Des.
, Vol.
83
, No.
3
, pp.
389
396
.
10.
Robinson
D. N.
,
Duffy
S. F.
and
Ellis
J. R.
,
1987
, “
A Viscoplastic Constitutive Theory for Metal Matrix Composites at High Temperature
,”
ASME-PVP
, Vol.
123
, pp.
49
56
.
11.
Robinson
D. N.
and
Duffy
S. F.
,
1990
, “
Continuum Deformation Theory for High-temperature Metallic Composites
,”
J. Eng. Mech., ASCE
, Vol.
116
, pp.
832
844
.
12.
Saleeb
A. F.
and
Wilt
T. E.
,
1993
, “
Analysis of the Anisotropic Viscoplastic-Damage Response of Composite Laminate—Continuum Basis and Computational Algorithms
,”
Int. J. Num. Methods, Eng.
, Vol.
36
, pp.
1629
1660
.
13.
Kawai
M.
,
1994
, “
Formulation of Inelastic Constitutive Model for Fiber-Reinforced Composite Materials
,”
trans. JSME, series A
, Vol.
60
, pp.
166
173
.
14.
Malinin
N. N.
and
Khadjinsky
G. M.
,
1972
, “
Theory of Creep With Anisotropic Hadening
,”
Int. J. Mecj. Sci.
, Vol.
14
, pp.
235
246
.
15.
P. J. Armstrong and C. O. Frederick, 1966, CEBG Report, NO.RD/B/N731.
16.
R. Hill, 1950, The Mathematical Theory of Plasticity, The Clarendon Press Oxford.
17.
W. Prager, 1958, Problemes de Plasticite Theorique, Dunod, Paris.
This content is only available via PDF.
You do not currently have access to this content.