This paper demonstrates through examples that erroneous material constants for complex visco-plastic material models can be obtained from simultaneous parameter estimation by nonlinear optimization methods unless the laboratory load paths used in the fitting process give significant model response sensitivities to changes in all of the material parameters. A general procedure is proposed in which a nonlinear optimization algorithm is coupled with analytically/numerically derived response sensitivities to evaluate an unambiguous set of material parameters. Response sensitivities enter into the parameter estimation procedure in two ways. Relative response sensitivities are first used to identify an efficient test matrix that, when simulated with the model, give model responses that are sensitive to changes in each of the material parameters. Then the corresponding nonzero response sensitivities are used to construct the gradient and Hessian matrices in a gradient-driven optimization algorithm to evaluate the material parameters. A model for braze alloys is used to demonstrate that erroneous parameter values may result if not all of the relative response sensitivities are “nonzero” and distinct.

1.
Anand
L.
,
1982
, “
Constitutive Equations for the Rate-Dependent Deformation of Metals at Elevated Temperatures
,”
ASME JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY
, Vol.
104
, pp.
12
17
.
2.
Bailey
R. W.
,
1926
,
Journal of Institute of Metals
, Vol.
35
, p.
27
27
.
3.
Bodner
S. R.
, and
Partom
Y.
,
1975
, “
Constitutive Equations for Elastic-Viscoplastic Strain-Hardening Materials
,”
ASME Journal of Applied Mechanics
, Vol.
42
, pp.
385
389
.
4.
Bammann, D. J., 1990, “Modeling Temperature and Strain Rate Dependent Large Deformations of Metals,” Applied Mechanics Reviews, Vol. 43, No. 5.
5.
Bates, Douglas M., and Watts, Donald G., 1988, Nonlinear Regression Analysis & Its Applications, Wiley, New York, NY.
6.
Chaboche
J. L.
,
1977
, “
Viscoplastic Constitutive Equations for the Description of Cyclic and Anisotropic Behavior of Metals
,”
Bulletin de l’Acad. Polonaise des Sciences, Serie Sc. et Techn.
, Vol.
25
, No.
1
, pp.
33
42
.
7.
Chan, K.S., Bodner, S. R., Walker, K. P., and Lindholm, U. S., 1984, “A Survey of Unified Constitutive Theories,” Proceedings of Second Symposium on Nonlinear Constitutive Relations for High Temperature Applications, Cleveland, Ohio, p. 1.
8.
Chan
K. S.
,
Bodner
S. R.
, and
Lindholm
U. S.
,
1988
, “
Phenomenological Modeling of Hardening and Thermal Recovery in Metals
,”
ASME JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY
, Vol.
110
, pp.
1
8
.
9.
Dennis, J. E., and Schnabel, R. B., 1983, Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Prentice Hall, NJ.
10.
Fossum, A. F., Callahan, G. D., Van Sambeek, L. L., and Senseny, P. E., 1988, “How Should One-Dimensional Laboratory Equations be Cast into Three-Dimensional Form?,” Key Questions in Rock Mechanics, Cundall et al., eds., Balkema, Rotterdam.
11.
Fossum
A. F.
,
Senseny
P. E.
,
Pfeifle
T. W.
, and
Mellegard
K. D.
,
1995
, “
Experimental Determination of Probability Distributions for Parameters of a Salem Limestone Cap Plasticity Model
,”
Mechanics of Materials
, Vol.
21
, pp.
119
137
.
12.
Freed, Alan D., and Walker, Kevin P., 1993, “Viscoplastic Model Development with an Eye Towards Characterization,” ASME MD-Vol. 43/AMD-Vol. 168, Material Parameter Estimation for Modern Constitutive Equations, L. A. Bertram, S. B. Brown, and A. D. Freed, eds., pp. 71–88.
13.
Garofalo
R.
,
1963
,
Transactions of the Metallurgical Society
, AIME, Vol.
227
, pp.
351
356
.
14.
Krieg, R. D., Swearengen, J. C., and Rohde, R. W., 1978, “A Physically-Based Internal Variable Model for Rate-Dependent Plasticity,” Elastic Behavior of Pressure Vessel and Piping Components, PVP-PB-028, p. 15.
15.
Mahnken
R.
, and
Stein
Erwin
,
1996
, “
Parameter Identification for Viscoplastic Models Based on Analytical Derivatives of a Least-Squares Functional and Stability Investigations
,”
International Journal of Plasticity
, Vol.
12
, No.
4
, pp.
451
479
.
16.
Miller
A. K.
,
1976
, “
An Inelastic Constitutive Model for Monotonic, Cyclic, and Creep Deformation; Part I—Equations Development and Analytical Procedures
,”
ASME JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY
, Vol.
96
, pp.
97
113
.
17.
Neilsen, M. K., Burchett, S. N., Stone, C. M., and Stephens, J. J., 1996, “A Viscoplastic Theory for Braze Alloys,” Sandia Report, SAND96-0984. Sandia National Laboratories, Albuquerque, NM 87185.
18.
Orowan
E.
,
1946
,
Journal West. Scot. Iron & Steel Inst.
, Vol.
54
, p.
45
45
.
19.
Robinson, D. N., 1978, “A Unified Creep-Plasticity Model for Structural Metals at High Temperature,” ORNL Report TM-5969.
20.
Roy
Samit
,
Fossum
Arlo F.
, and
Dexter
Robert J.
,
1992
, “
On the Use of Polar Decomposition in the Integration of Hypoelastic Constitutive Laws
,”
International Journal of Engineering Science
, Vol.
30
, pp.
119
133
.
21.
Schwertel
J.
, and
Schinke
B.
,
1996
, “
Automated Evaluation of Material Parameters of Viscoplastic Constitutive Equations
,”
ASME JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY
, Vol.
118
, pp.
273
279
.
22.
Senseny
P. E.
,
Brodsky
N. S.
, and
DeVries
K. L.
,
1993
, “
Parameter Evaluation for a Unified Constitutive Model
,”
ASME JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY
, Vol.
115
, No.
2
, pp.
157
162
.
23.
Senseny, P.E., and Fossum, A. F., 1993, “Parameter Evaluation for a Viscoplastic Constitutive Model,” ASME MD-Vol. 43/AMD-Vol. 168, Material Parameter Estimation for Modern Constitutive Equations, Bertram, L. A., Brown, S. B., and Freed, A. D., eds., pp. 243–257.
24.
Senseny
P. E.
, and
Fossum
A. F.
,
1995
, “
On Testing Requirements for Viscoplastic Constitutive Parameter Estimation
,”
ASME JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY
, Vol.
117
, pp.
151
156
.
25.
Senseny, P.E., and Fossum, A. F., 1996, “Testing to Estimate the Munson-Dawson Parameters,” Proceedings 4th Conference on the Mechanical Behavior of Salt, Ecole Polytechnique de Montreal, June 17–18.
26.
Walker, K. P., 1981, “Research and Development Programs for Nonlinear Structural Modeling with Advanced Time-Temperature Dependent Constitutive Relationships,” NASA Contract Report NASA CR 165533.
This content is only available via PDF.
You do not currently have access to this content.