The purpose of this paper is to present a consistent and thorough development of the strain and strain-rate measures affiliated with Hencky. Natural measures for strain and strain-rate, as I refer to them, are first expressed in terms of the fundamental body-metric tensors of Lodge. These strain and strain-rate measures are mixed tensor fields. They are mapped from the body to space in both the Eulerian and Lagrangian configurations, and then transformed from general to Cartesian fields. There they are compared with the various strain and strain-rate measures found in the literature. A simple Cartesian description for Hencky strain-rate in the Lagrangian state is obtained.

1.
Almansi
E.
,
1911
,
Sulle deformazioni finite dei solidi elastici isotropi
,
I. Rendiconti della Reale Accademia dei Lincei, Classe di scienze fisiche, matematiche e natural
, Vol.
20
, pp.
705
714
, in Italian.
2.
Cauchy, A.-L., 1827, Exercices de Mathe´matiques, Vol. 2, Paris, de Bure Fre`res, in French.
3.
Davis
E. A.
,
1937
, “
Plastic Behavior of Metals in the Strian-Hardening Range. Part II
,”
Journal of Applied Physics
, Vol.
8
, pp.
213
217
.
4.
Finger
J.
,
1894
, “
U¨ber die allgemeinsten Beziehungen zwischen endlichen Deformationen und den Zugeho¨rigen Spannungen in aeolotropen und isotropen Substanzen
,” Akademie der Wissenschaften, Vienna,
Sitzungsberichte
, Vol.
103
, pp.
1073
1100
, in German.
5.
Fitzgerald
J. E.
,
1980
, “
A Tensorial Hencky Measure of Strain and Strain Rate for Finite Deformations
,”
Journal of Applied Physics
, Vol.
51
, pp.
5111
5115
.
6.
Freed, A. D., 1985, “A Body Tensor Formalism for Elastic/Plastic Continua With Applications in Uniaxial Extension.” Ph.D. thesis, Jan. University of Wisconsin, Madison.
7.
Green
G.
,
1841
, “
On the Propagation of Light in Crystallized Media
,”
Transactions of the Cambridge Philosophical Society
, Vol.
7
, pp.
121
140
.
8.
Gurtin
M. E.
, and
Spear
K.
,
1983
, “
On the Relationship Between the Logarithmic Strain Rate and the Stretching Tensor
,”
International Journal of Solids and Structures
, Vol.
19
, pp.
437
444
.
9.
Hencky
H.
,
1925
, “
Die Bewegungsgleichungen beim nichtstationa¨ren Fließen plastischer Massen
,”
Zeitschrift fu¨r Angewandte Mathematik und Mechanik
, Vol.
5
, pp.
144
146
, in German.
10.
Hencky
H.
,
1928
, “
U¨ber die Form des Elastizita¨tsgesetzes bei ideal elastischen Stoffen
,”
Zeitschrift fu¨r technische Physik
, Vol.
9
, pp.
215
220
, in German.
11.
Hencky
H.
,
1931
, “
The Law of Elasticity for Isotropic and Quasi-Isotropic Substances by Finite Deformations
,”
Journal of Rheology
, Vol.
2
, pp.
169
176
.
12.
Hill
R.
,
1970
, “
Constitutive Inequalities for Isotropic Elastic Solids Under Finite Strain
,”
Proceedings of the Royal Society
, London, Series A, Vol.
314
, pp.
457
472
.
13.
Lodge
A. S.
,
1951
, “
On the Use of Convected Coordinate Systems in the Mechanics of Continuous Media
,”
Proceedings of the Cambridge Philosophical Society
, Vol.
47
, pp.
575
584
.
14.
Lodge, A. S., 1964, Elastic Liquids: An Introductory Vector Treatment of Finite-Strain Polymer Rheology. Academic Press, London.
15.
Lodge
A. S.
,
1972
, “
On the Description of Rheological Properties of Viscoelastic Continua: I. Body-, Space-, and Cartesian-space-Tensor Fields
,”
Rheologica Acta
, Vol.
11
, pp.
106
118
.
16.
Lodge, A. S., 1974, Body Tensor Fields in Continuum Mechanics: Applications to Polymer Rheology. Academic Press, NY.
17.
Ludwik, P., 1909, Elemente der Technologischen Mechanik, von J. Springer, Berlin, in German.
18.
Malvern, L. E., 1969, Introduction to the Mechanics of a Continuous Medium. Prentice Hall, Englewood Cliffs, NJ.
19.
McConnell, A. J., 1957, Applications of Tensor Analysis, Dover, NY, An unabridged and unaltered reproduction of the corrected version (1936) originally published under the title Applications of the Absolute Differential Calculus, Blackie, London, 1931.
20.
Murnaghan, F. D., 1941, “The Compressibility of Solids Under Extreme Pressures,” Theodore von Ka´rma´n, Anniversary Volume: Contributions to Applied Mechanics and Related Subjects by the Friends of Theodore von Ka´rma´n on his Sixtieth Birthday, pp. 121–136, California Institute of Technology, Pasadena.
21.
Nadai
A.
,
1937
, “
Plastic Behavior of Metals in the Strain-Hardening Range. Part I
,”
Journal of Applied Physics
, Vol.
8
, pp.
205
213
.
22.
Oldroyd
J. G.
,
1950
, “
On the Formulation of Rheological Equations of State
,”
Proceedings of the Royal Society, London
, Series A, Vol.
200
, pp.
523
541
.
23.
Signorini, A., 1930, “Sulle Deformazioni Thermoelastiche Finite.” C. W. Oseen and W. Weibull, eds., Proceedings of the 3rd International Congress for Applied Mechanics, Stockholm, Volume 2, pp. 80–89. Ab. Sveriges Litograflska Tryckerier, in Italian.
24.
Skrzypek, J. J., 1993, Plasticity and Creep: Theory, Examples, and Problems. Boca Raton: CRC Press. English edition, R. B. Hetnarski, ed.
25.
Sto¨ren
S.
, and
Rice
J. R.
,
1975
, “
Localized Necking in Thin Sheets
,”
Journal of the Mechanics and Physics of Solids
, Vol.
23
, pp.
421
441
.
26.
Truesdell, C., and Toupin, R., 1960, The Classical Field Theories, Vol. III/1, pp. 226–793 of Encyclopedia of Physics, Berlin; Springer-Verlag. S. Flu¨gge, (ed.).
This content is only available via PDF.
You do not currently have access to this content.