This paper presents the variance method of determining the fracture plane under random multiaxial stress states. The fracture plane was estimated analytically by the variance method with the three fatigue criteria. The estimated fracture planes were compared with experimental results using type SUS 304 and 1Cr-1Mo-1/4V steel cruciform specimens. The variance method with the maximum normal strain criterion, by neglecting the strain in direction in which no external forces act, could estimate the actual fracture planes of cruciform specimens in high temperature biaxial low cycle fatigue.

1.
Macha, E., “Generalization of Strain Criteria of Multiaxial Cyclic Fatigue to Random Loadings,” Fortschr. Ber. VDI, Reihe 18, Nr. 52, VDI—Verlag, Dusseldorf, 1988, p. 102.
2.
Macha, E., “Generalization of Fatigue Fracture Criteria for Multiaxial Sinusoidal Loadings in the Range of Random Loadings,” Biaxial and Multiaxial Fatigue, EGF 3, M. Brown and K. J. Miller, eds., MEP, London, 1989, pp. 425–436.
3.
McDiarmid
D. L.
, “
Fatigue Under Out-of-Phase Bending and Torsion
,”
Fatigue Fract. Engng. Mater. Struct.
, Vol.
9
, No.
6
,
1987
, pp.
457
475
.
4.
Ohnami
M.
, and
Sakane
M.
, “
A Study of Metallic Creep-Fatigue Interaction at Elevated Temperature
,”
Bull. JSME
, Vol.
21
, No.
157
,
1978
, pp.
1057
1063
.
5.
Ohnami, M., Sakane, M., and Hamada, N., “Effect of Changing Principal Stress Axes on Low-Cycle Fatigue Life in Various Strain Wave Shapes at Elevated Temperature,” Multiaxial Fatigue ASTM STP 853, K. J. Miller and M. W. Brown, eds., 1985, pp. 622–634.
6.
Kanazawa, K., Miller, K. J., and Brown, M. W., “Low-Cycle Fatigue Under Out-of-Phase Loading Conditions,” ASTM JEMT, July 1977, pp. 222–228.
7.
Zamrik, S. Y., and Frishmuth, R. E., “The Effects of Out-of-Phase Biaxial Strain Cycling on Low-Cycle Fatigue,” Exper. Mech., May 1973, pp. 204–208.
8.
Nishihara
T.
, and
Kawamoto
M.
, “
The Strength of Metals Under Combined Alternating Bending and Torsion with Phase Difference
,”
Memoirs of the College of Eng.
, Kyoto Imperial Univ., Vol.
XI
, No.
4
,
1945
, pp.
85
112
.
9.
Sakane
M.
,
Ohnami
M.
, and
Sawada
M.
, “
Fracture Modes and Low Cycle Biaxial Fatigue Life at Elevated Temperature
,”
ASME JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY
, Vol.
109
, No.
3
,
1987
, pp.
236
243
.
10.
Dietmann
H.
, and
Issler
L.
, “
Festigkeitsberechnung bei Mehrachsiger Phasenverschobener Schwingbeanspruchung mit Korperfesten Hauptspan-nungsrichtungen
,”
Konstruktion
,
28
, H.1,
1976
, pp.
23
30
.
11.
Miller, W. R., and Hull, W. C., “Fatigue Analysis Considering Rotating Principal Stress Axes for Aluminum Alloy 2024 T351,” Proc. Inter. Conf. Mech. Behav. Mater. (ICM1), Soc. of Mater. Sci., Kyoto, 1971, Vol. II, pp. 501–507.
12.
Skanov, I. N., “Eksperimentalnaia Proverka Kriterev Ustalostnoi Prochnosti pri Dvukhosnom Rastiazheni,” Problemy Prochnosti, 1970, No. 2, pp. 8–10.
13.
Socie
D.
, “
Multiaxial Fatigue Damage
,”
Mechanical Behavior of Materials
, (ICM5), Beijing,
1987
, Vol.
2
, pp.
637
644
.
14.
Cox
H. L.
, and
Field
J. E.
, “
The Initiation and Propagation of Fatigue Cracks in Mild Steel Pieces of Square Section
,”
The Aeronautical Quarterly
, Vol.
IV
, Aug.
1952
, pp.
1
18
.
15.
Brown
N. W.
, and
Miller
K. J.
, “
Initiation and Growth of Cracks in Biaxial Fatigue
,”
Fatigue Eng. Mater. Struct.
, Vol.
1
, No.
2
,
1979
, pp.
231
246
.
16.
Taira, S., Inoue, T., and Takabashi, M., “Low-Cycle Fatigue Under Multiaxial Stresses (…) at Room Temperature,” Trans. JSME, No. 35, 1969, pp. 526–532.
17.
Ogata, T., Nitta, A., and Kuwabara, K., “Biaxial Low Cycle Fatigue Failure of Type 304 Stainless Steel Under In-Phase and Out-of-Phase Straining Conditions,” Third Inter. Conf. on Biaxial/Multiaxial Fatigue, MPA Univ. Stuttgart, Vol. 2, 1989, pp. 56.1–56.17.
18.
Findley, W. N., “A Theory for the Effect of Mean Stress on Fatigue of Metals Under Combined Torsion and Axial Load or Bending,” ASME Journal of Engineering Industry, Nov. 1959, pp. 302–306.
19.
Stulen
F. B.
,
Cummings
H. N.
, “
A Failure Criterion for Multiaxial Fatigue Stresses
,”
Proc. ASTM
, Vol.
54
,
1954
, pp.
822
835
.
20.
Macha, E., “Simulation Investigations of the Position of Fatigue Fracture Plane in Materials With Biaxial Loads,” Mat.-wiss. u. Werkstofftech. 20, 1989, Heft. 4/89, pp. 132–136, Heft. 5/89, pp. 153–163.
21.
Bedkowski, W., and Macha, E., “Maximum Normal Stress Fatigue Criterion Applied to Random Triaxial Stress State,” Theor. Appl. Frac. Mech., No. 7, 1987, pp. 89–107.
22.
Bedkowski, W., and Macha, E., “Fatigue Criterion of the Maximum Strain in the Direction Perpendicular to a Fracture Plane,” Fortschr.-Ber. VDI Reihe 5, Nr 97, VDI—Verlag, Dusseldorf, 1985, p. 82.
23.
Bedkowski, W., and Macha, E., “Fatigue Fracture Plane Under Multiaxial Random Loadings—Prediction by Variance of Equivalent Stress Based on the Maximum Shear and Normal Stresses,” Mat.—wiss. u. Werkstofftech. 23, 1992, pp. 82–94.
24.
Sakane, M., and Ohnami, M., “Creep-Fatigue in Biaxial Stress States Using Cruciform Specimens,” Fatigue Under Biaxial and Multiaxial Loading, ESIS 10, K. Kussmaul, D.Mc. Diarmid and D. Socie, eds., MEP London, 1991, pp. 265–278.
25.
Itoh
T.
,
Sakane
M.
, and
Ohnami
M.
, “
Crack Mode in High-Temperature Biaxial Low-Cycle Fatigue Using a Cruciform Specimen
,”
Trans. JSME
, Vol.
56
, No.
521
,
1990
, pp.
45
52
.(in Japanese).
This content is only available via PDF.
You do not currently have access to this content.